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Abstract. Let there be a set J of n jobs and a set M of m parallel
machines, where each job j takes pi,j ∈ Z+ time units on machine i and
assume pi,j = ∞ implies job j cannot be scheduled on machine i. In
makespan minimization on unrelated parallel machines (R||Cmax), the
goal is to schedule each job non-preemptively on a machine so as to
minimize the makespan. A job-intersection graph GJ = (J,EJ) is an
unweighted undirected graph where there is an edge {j, j′} ∈ EJ if there
is a machine i such that both pi,j 6= ∞ and pi,j′ 6= ∞. In this paper
we consider two variants of R||Cmax where there are a small number of
eligible jobs per machine. First, we prove that there is no approxima-
tion algorithm with approximation ratio better than 3/2 for R||Cmax

when restricted to instances where the job-intersection graph contains
no diamonds, unless P = NP. Second, we match this lower bound by pre-
senting a 3/2-approximation algorithm for this special case of R||Cmax,
and furthermore show that when GJ is triangle free R||Cmax is solvable
in polynomial time. For R||Cmax restricted to instances when every ma-
chine can process at most ` jobs, we give approximation algorithms with
approximation ratios 3/2 and 5/3 for ` = 3 and ` = 4 respectively, a
polynomial-time algorithm when ` = 2, and prove that it is NP-hard to
approximate the optimum solution within a factor less than 3/2 when
` ≥ 3. In the special case where every pi,j ∈ {pj ,∞}, called the restricted
assignment problem, and there are only two job lengths pj ∈ {α, β} we
present a (2− 1/(`− 1))-approximation algorithm when ` ≥ 3.
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1 Introduction

Let J be a set of n jobs and M a set of m parallel machines, where a job j
takes pi,j ∈ Z+ time units on machine i. The goal in makespan minimization on
unrelated parallel machines is to produce a schedule where each job is scheduled
non-preemptively on a machine so as to minimize the length of the schedule or
makespan. Makespan minimization on unrelated parallel machines is a classic
NP-hard scheduling problem, and is denoted as R||Cmax in Graham’s notation
(see [12]). Note that when the processing time pi,j = ∞, we say that job j
cannot be scheduled on machine i, and assume the processing times are given as
an m×n processing matrix P = (pi,j). In this paper we investigate two versions
of R||Cmax:

– R||Cmax with simple job-intersection structure. A job-intersection graph GJ =
(J,EJ) has a job vertex for each job j ∈ J , and for any two jobs j, j′ ∈ J ,
there is an edge {j, j′} ∈ EJ if there is a machine i such that pi,j 6= ∞
and pi,j′ 6= ∞. A set of restrictions on which machines can process a job
can be represented as a job-intersection graph. We study R||Cmax restricted
to particular classes of job-intersection graphs. We give an example of a
job-intersection graph in Figure 1.

Instance: m = 3, n = 4

P =

j1 j2 j3 j4( )1 2 1 ∞ M1

3 5 1 ∞ M2

∞ ∞ 1 4 M3

j1

j2 j3 j4

Fig. 1. An instance of R||Cmax (left), and its job-intersection graph GJ (right).

– R||Cmax with bounded job assignments. Let Ji be the set of jobs that can
be processed by machine i, i.e., Ji = {j ∈ J | pi,j 6= ∞}. Let ` > 0. We
consider R||Cmax restricted to instances when, for each machine i, |Ji| ≤ `.
Clearly when ` = n, it is R||Cmax.

Currently the best-known approximation algorithms for R||Cmax have ap-
proximation ratio 2 [10,18,24], and there is no approximation algorithm for
R||Cmax with approximation ratio less than 3/2, unless P = NP [18]. Despite
much intensive study, finding an approximation algorithm with approximation
ratio strictly less than 2 still remains an open problem and is regarded as one of
the most challenging open problems in the study of approximation algorithms
today [25]. A natural question is whether there are any “well-structured” and ef-
ficient to recognize classes of job-intersection graphs, for which the corresponding
instances of R||Cmax can be efficiently solved or for which there are approxima-
tion algorithms with approximation ratio less than 2. As we show, both problems
given above are closely related from a hardness of approximation standpoint
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and we present algorithms for both. Furthermore, we establish that there is
no approximation algorithm with approximation ratio less than 3/2 for R||Cmax

restricted to diamondless job-intersection graphs or for R||Cmax when every ma-
chine can process at most ` = 3 jobs, unless P = NP. However, in both of these
cases we can formulate a relatively simple combinatorial algorithm that has the
approximation ratio 3/2, matching the lower bound.

2 Preliminaries

One NP-hard special case of R||Cmax of recent interest in the literature is the
graph balancing problem. In the graph balancing problem, every job takes pi,j =
pj time units and can only be scheduled on one of at most two possible machines.
This problem can be described as an edge orientation problem: given a weighted
multigraph G = (V,E) with weights pe for each edge e ∈ E, orient all the edges
in G such that the maximum load of the vertices is minimized, where the load
of a vertex is the sum of all the weights of edges oriented toward that vertex. In
this formulation the edges are the jobs, and the vertices are the machines. We
would like to remark that another well-known and intensely studied special case
of R||Cmax is the restricted assignment problem, which is a general case of the
graph balancing problem where every job has a subset of machines on which it
can be scheduled.

A graph is triangle free if it does not contain any simple cycles of length 3—
triangles. Note that all bipartite graphs contain no odd-length cycles, thus all
bipartite graphs are triangle free. The diamond graph consists of four vertices
and five edges, so it is K4 less one edge. We call a graph diamondless if it does
not contain the diamond graph as a subgraph. In contrast, a diamond-free graph
is defined as not having the diamond graph as an induced subgraph. An induced
subgraph H = (V ′, E′) of a graph G = (V,E) is such that V ′ ⊆ V and an
edge e = {u, v} ∈ E′ if both u, v ∈ V ′ and e ∈ E; all diamondless graphs are
diamond-free, but not all diamond-free graphs are diamondless. For example,
the graph K4 is diamond free but is not diamondless. In Figure 2 we give an
instance of the graph balancing problem where its job-intersection graph is both
diamondless and diamond free.

3 Related Work

The best-known approximation algorithms for R||Cmax and the restricted assign-
ment problem have approximation ratio 2 [10,18,24]. However, for the restricted
assignment problem with two job lengths, α < β, Chakrabarty et al. [5] gave a
(2 − δ)-approximation algorithm for some small value δ > 0 and a (2 − α/β)-
approximation algorithm. Ebenlendr et al. [8] presented a 7/4-approximation
algorithm for the graph balancing problem, and in [13,22] 3/2-approximation
algorithms are presented for the problem when there are only two job lengths.

The concept of the job-intersection graph goes back to at least Glass and
Kellerer [11] with the study of so-called nested-structures and the restricted
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j1 j2 j3

j4 j5 j6 j7

j8 j9 j10

j1 j2 j3

j4 j5 j6 j7

j8 j9 j10

Fig. 2. An instance of the graph balancing problem (left) and its job-intersection graph
(right).

assignment problem. Research on the restricted assignment problem when in-
stances satisfy certain structural properties is extensive and has grown in inter-
est in recent years [19]. In addition, there has been investigation of scheduling
problems on machine-intersection graphs where the machines are the vertices
and an edge exists between two vertices when a job can be scheduled on the
two corresponding machines [3,14,17]. Jansen et al. [14]3 proved that R||Cmax

is fixed-parameter tractable (FPT) in the treewidth tw of the job-intersection
graph. That is, if the job-intersection graph GJ has constant treewidth, R||Cmax

can be solved in polynomial time. So when the job-intersection graph belongs to
graph classes such as trees (tw = 1), cactus graphs (tw ≤ 2), outerplanar graphs
(tw ≤ 2), and series-parallel graphs (tw ≤ 2), R||Cmax is solvable in polynomial
time. In this paper we study R||Cmax restricted to classes of job-intersection
graphs that do not have constant treewidth. In Figure 3 we summarize both
computational complexity results found in this paper and presently in the liter-
ature for R||Cmax on job-intersection graphs.

To the best of our knowledge R||Cmax with bounded job assignments has
not been previously studied. Bounded job assignments have been considered in
other types of scheduling problems, such as in batch scheduling where a batch
size bounds the number of jobs simultaneously processed by a batching ma-
chine [6,20]. A generalization of R||Cmax where every machine has a positive
integer called a machine capacity that bounds the maximum number of jobs
each machine can process has also been studied. For this generalization there is
a 2-approximation algorithm [23], and there exists an efficient polynomial-time
approximation scheme when the machines are identical [7].

It is important to discuss recognition of the instances for which we design
algorithms. For any 0 ≤ ` ≤ n, it is trivial to determine if the set Ji of jobs that
every machine i can process has size at most `. Alon et al. [1] gave an algorithm
that can test if a graph (V,E) is triangle free in O(|E|1.41) time. We note that
diamondless graphs can be recognized in O(|V |3) time by a simple algorithm
that looks for a pair of triangles with a common edge. Kloks et al. [16] showed
that one can recognize if a graph is diamond-free (and give a diamond in the

3 In this paper the authors refer to the job-intersection graph as the primal graph.
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tree [14]

cactus [14]

general graphs [9,18]

triangle free [*]

diamond free [*]
outerplanar [14]

series-parallel [14]

constant treewidth [14]

Unbounded Treewidth

Bounded Treewidth

bipartite [*]complete [*]

threshold [*]

split [*]

cograph [*]

interval [*]

house free [*]

diamondless [*]

Fig. 3. Summary of results for R||Cmax with simple job-intersection structure. The
job-intersection graphs restricting the machine assignments are grouped by graph class.
For two graph classes A and B, “A → B” in the diagram means that any graph in A
is in graph class B. Problems boxed with dashed lines are polynomial-time solvable,
and problems with boxed solid lines are strongly NP-hard. The number(s) in brackets
are reference numbers, and graph classes with [*] beside them refer to computational
complexity results found in this paper.

graph if it is not) in O(|V |c + |E|3/2) time, where O(|V |c) is the time complexity
to compute the square of a |V | × |V | 0-1 adjacency matrix.

4 Our Results

First, we establish that once one admits triangles but forbids diamonds in the
job-intersection graph, there is no k-approximation algorithm for R||Cmax with
k < 3/2, unless P 6= NP. This matches the same inapproximability bounds as
those that exist for the restricted assignment problem with two job lengths [18]
and the graph balancing problem with two job lengths [2,9], both special cases
of R||Cmax. To do this, we strengthen the inapproximability result of Eben-
lendr et al. [9] for the graph balancing problem with two job lengths. Employing
this result we can also prove that for R||Cmax when every machine i satis-
fies |Ji| ≤ 3, the inapproximability lower bound of 3/2 holds. In Section 8, we
show that R||Cmax restricted to job-intersection graphs belonging to several well-
studied graph classes such as complete graphs, threshold graphs, interval graphs,
cographs, split graphs, and house-free graphs do not have any k-approximation
algorithm with k < 3/2, unless P = NP.
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To complement our inapproximability results, we present a flow-based 3/2-
approximation algorithm for R||Cmax when every machine can process at most
three jobs. As we will later justify, this problem contains as special cases R||Cmax

when GJ is triangle free and R||Cmax when GJ is diamondless. Our algorithm
can also be used to exactly solve in polynomial time R||Cmax when every machine
can process at most two jobs, as well as R||Cmax when restricted to triangle-free
job-intersection graphs. In addition, the same algorithm is a 5/3-approximation
algorithm forR||Cmax when every machine can process at most four jobs. Finally,
in Section 7 we give a (2− 1/(`− 1))-approximation algorithm for the restricted
assignment problem with two job lengths when every machine can process at
most ` ≥ 3 jobs.

5 Hardness of Approximation on Diamondless Graphs

In this section we prove under the assumption that P 6= NP that R||Cmax has
the inapproximability bound 3/2 even in the case when instances have job-
intersection graphs that are diamondless. To do this, we employ a similar re-
duction as that used by Ebenlendr et al. [9]. Since Ebenlendr et al. showed this
reduction yields the inapproximability bound we desire, we must show that the
job-intersection graphs from graph-balancing instances produced by the reduc-
tion are diamondless.

The reduction by Ebenlendr et al. [9] uses a variant of the satisfiability
problem we will denote as At-most-3-SAT(2L). Let there be n′ boolean vari-
ables x1, . . . , xn′ , and m′ clauses α1, . . . , αm′ . Given a propositional logic for-
mula φ in conjunctive normal form (CNF) where there are at most three literals
per clause, each variable appears at most three times in φ, and each literal (a
variable or its negation) appears at most twice in φ, the problem is to decide
whether there is an assignment of values to the variables x1, . . . , xn′ so that φ
is satisfied. At-most-3-SAT(2L) is known to be NP-complete [2]. Without loss
of generality we assume that no clause contains a tautology, and that no clause
contains duplicate literals.

Now we describe how to construct the graph balancing instance I ′ from At-
most-3-SAT(2L) instance I = (φ, n′,m′). Introduce two types of vertices: literal
vertices, and clause vertices. Given a variable xi, a literal vertex corresponds to a
literal xi or ¬xi. For each clause αj , a clause vertex is created that corresponds
to clause αj . There will be two types of edges: tautologous edges, and clause
edges. For each variable xi, a tautologous edge {xi,¬xi} has weight 2. For each
clause αj and literal λ that appears in αj , a clause edge {λ, αj} has weight 1.
Finally, for clause αj add 3 − |αj | self-loops with weight 1 on its clause vertex,
where |αj | is the number of literals in clause αj . The idea is that the orientation
of the tautologous edges will determine the assignment of values to the variables
of φ. Instance I ′ can be built from I in polynomial time.

To illustrate the reduction, we give an example. Let the propositional logic
formula φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3), where n′ = 3 and m′ = 2. Then
α1 = (x1 ∨¬x2) and α2 = (¬x1 ∨¬x2 ∨¬x3). Applying the reduction we obtain
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x1

¬x1

x2

x3

¬x2

¬x3

α1

α2

1
2

1

2 1

1

2
1

1

x1

¬x1

x2

x3

¬x2

¬x3

α1

α2

1
2

1

2 1

1

2
1

1

Fig. 4. Given the formula φ = (x1 ∨¬x2)∧ (¬x1 ∨¬x2 ∨¬x3), the resulting graph bal-
ancing instance applying the construction is shown on the left. Its optimal orientation
is given on the right.

the graph-balancing instance shown in Figure 4. The formula φ can be satisfied,
and the resulting instance has an optimal orientation with makespan 2.

Ebenlendr et al. [9] proved that I ′ has a schedule with makespan at most
two if φ is satisfied, but the makespan is at least three otherwise. Hence, if there
were a k-approximation algorithm with k < 3/2, one could apply the above
reduction, apply said k-approximation algorithm, then correctly decide whether
φ is satisfiable or not in polynomial time: if the makespan is less than three
return “yes”; and if the makespan is at least three, return “no”.

Lemma 1. The job-intersection graph GJ of the weighted multigraph G pro-
duced by the above reduction contains no diamonds.

Proof. Assume that GJ has at least one diamond. Observe that every vertex in
G has at most three incident edges, so GJ can only be comprised of isolated job
vertices, paths, or triangles. Then, there must be two triangles that share two
job vertices to form a diamond.

First, consider the edges incident on literal vertices in G. Recall that each
variable appears in at most three clauses in formula φ and each literal for that
variable appears at most twice. So the job vertex corresponding to the tautolo-
gous edge {xi,¬xi} has degree at most three in GJ . Furthermore, this job vertex
is only adjacent to job vertices that are clause edges in G, and at most two clause
edges may have the same literal vertex as an endpoint in G. Thus, any job ver-
tex {xi,¬xi} along with its adjacent job vertices for clause edges form in GJ
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either a path with one edge, a path with two edges, a triangle, or a path with
an edge plus a triangle, but not two triangles i.e. a bowtie or a diamond.

Next consider the edges incident on clause vertices in G. As no two clause
vertices have edges in common in G and every clause vertex has three edges
incident on it, the edges incident on the clause vertex form a triangle in GJ .
Thus, the diamond must be comprised of job vertices of two clause edges that
are adjacent to the job vertices of a tautologous edge and another clause edge.
There is no diamond when these two clause edges are incident on two literal
vertices of different variables, hence, there are two possibilities:

1. A diamond formed by two clause edges that are incident on the same literal
vertex in G. This cannot happen as no clause in formula φ has duplicate
literals.

2. A diamond formed by two clause edges that are incident on two literal ver-
tices for the same variable in G. No clause contains tautologies, thus this
situation cannot occur.

Therefore, by contradiction, GJ contains no diamonds. ut

Theorem 1. There is no k-approximation algorithm with k < 3/2 for the graph
balancing problem with two job lengths when the job-intersection graph GJ con-
tains no diamonds, unless P = NP.

Corollary 1. There is no k-approximation algorithm with k < 3/2 for R||Cmax

restricted to diamondless job-intersection graphs, unless P = NP.

If |Ji| > 3 for some machine i, then there are at least four jobs j1, j2, j3,
j4 such that pi,j1 6= ∞, pi,j2 6= ∞, pi,j3 6= ∞, and pi,j4 6= ∞. This would
imply GJ contains a diamond; thus, for any machine i, |Ji| ≤ 3 is satisfied if
GJ is diamondless. Hence, the diamondless case is a special case of when, for
each machine i, |Ji| ≤ 3. Thus our inapproximability results carry over to the
special case where every machine can process at most three jobs. Do note that
proving this special case has the inapproximability bound stated in the corollary
can also be made trivially by simply observing that every vertex has at most
three incident edges in the graph-balancing instance constructed in the above
reduction.

Corollary 2. There is no k-approximation algorithm for the graph balancing
problem with two job lengths when every machine can process at most three jobs
where k < 3/2, unless P = NP.

6 Approximation Results for Unrelated Scheduling with
Bounded Job Assignments

As we stated at the end of the previous section, R||Cmax restricted to diamond-
less job-intersection graphs is a special case of R||Cmax when every machine i
satisfies |Ji| ≤ 3. We present a 5/3-approximation algorithm for R||Cmax when
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every machine can process at most four jobs. In our analysis we show the same
approximation algorithm has approximation ratio 3/2 in the case when every
machine can process at most three jobs. Note that for R||Cmax restricted to
triangle-free job-intersection graphs, no machine can process three jobs as doing
so implies three jobs share a common machine where they can be scheduled, so
every machine i satisfies |Ji| ≤ 2 in this particular situation.

Let OPT be the value of an optimal solution for R||Cmax when every ma-
chine i satisfies |Ji| ≤ 4. Similar to [18], we perform a binary search procedure
to find the smallest value T over the interval [0,

∑
i∈M,j∈J (pi,j)] such that the

algorithm given below produces a schedule with makespan at most (5/3)T . If a
schedule is produced then we decrease the value of T in the binary search, and
if REJECT is reported, then there is no schedule with makespan at most T and
thus T is increased in the binary search. At the end of the binary search the
smallest value for T is found, so it must be the case that T ≤ OPT and so the
approximation ratio is 5/3. We say a job j is small on machine i if its processing
time is pi,j ≤ T/2, and is big on machine i if T/2 < pi,j ≤ T . Observe that if
OPT ≤ T , at most one big job can be scheduled on a machine. Note that by our
definitions, there can be a job j that is neither big nor small with respect to its
processing time on some machine i, if pi,j > T .

1. First, there may be machines for which some jobs are neither big nor small.
For each machine i, if any job j has a processing time pi,j > T on machine i,
we remove job j from job set Ji. As a result, every job j in each job set Ji
has processing time pi,j ≤ T .

2. Build a single-source single-sink flow network N with source s∗ and sink t∗.
In this network, create a job node for each job, and add arcs from s∗ to
each job node with capacity 1. Now, for each machine i, we create a machine
node and a buffer node with arcs according to the Machine Plans given in
Figure 5, which we describe now. Let disjoint sets Si,Bi ⊆ Ji, where by
default it is assumed that Si and Bi are the small jobs and big jobs in Ji,
respectively. Consider the following cases in the order provided:
(a) If |Ji| = 0, no arcs are added for machine node i.
(b) If

∑
j∈Ji

pi,j ≤ T , then every job j ∈ Ji can be scheduled on machine i,
so we add arcs according to the Machine Plan with d = |Ji| and set
Si = Ji and Bi = ∅.

(c) If |Ji| ≤ 3, then use the Machine Plan with d = |Ji| − 1.
In the last set of cases |Ji| = 4. Sort the jobs of each Ji in non-increasing

order by processing time; let these jobs be denoted as j
(i)
1 , j

(i)
2 , j

(i)
3 , j

(i)
4 .

(d) If
∑4

k=2 pi,j(i)k

> T , add arcs according to the Machine Plan with d = 2.

(e) If
∑4

k=2 pi,j(i)k

≤ T and p
i,j

(i)
1

+ p
i,j

(i)
2
> T , put j

(i)
1 and j

(i)
2 (if either is

not already) into Bi and use the Machine Plan with d = 3.

(f) If
∑4

k=2 pi,j(i)k

≤ T and p
i,j

(i)
1

+ p
i,j

(i)
2
≤ T , use the Machine Plan with

d = 3.
3. Now that N is constructed, the algorithm computes an integral maximum

flow f on N . If any arc leaving the source does not send one unit of flow
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t∗

1

d

1

1...





j ∈ Bi

Mi

1

...





j ∈ Si

1

1

Fig. 5. Flow network N is built in part by determining the appropriate machine plan
for each machine. Assume an integer value d is provided along with each plan, and
unless otherwise stated, let Si,Bi ⊆ Ji be the set of small jobs and set of big jobs,
respectively. The machine plan for machine node i shows the arcs and capacities of the
arcs included. Unlabelled white nodes are job nodes, the black node is a buffer node
of machine i that only allows one unit of flow to be sent from job nodes in Bi, and t∗

is the sink of N .

then there is a job node that receives no flow, report REJECT if this is the
case. If all the job nodes receive one unit of flow, we build the schedule as
follows: for each job node j, if machine node i receives 1 unit of flow from j,
schedule job j on machine i.

By the way we designed the flow network, it is not hard to see that if OPT ≤
T , all the arcs leaving the source are saturated, and as a result, a schedule is
produced.

Now we analyze the load of each machine. First, it is trivial to observe that
the load of any machine i is at most T if either

∑
j∈Ji

pi,j ≤ T (case (b)) or all
the jobs in Ji are big (case (c) if |Ji| ≤ 3, case (d) if |Ji| = 4). Thus, we consider
each machine i when there is at least one small job and

∑
j∈J pi,j > T based on

the number of jobs in job set Ji:
– |Ji| ≤ 2. If |Ji| ≤ 1, then either case (a) or case (b) occurs, which we already

considered above. If |Ji| = 2 and all the jobs are small, then
∑

j∈Ji
pi,j ≤

T/2+T/2 = T and falls under case (b). If |Ji| = 2 and
∑

j∈Ji
pi,j > T , then

the only remaining case is when there is one big job and one small job that
cannot be scheduled together. The algorithm applies case (c), which permits
only |Ji|−1 = 1 job to be scheduled on machine i, and the load of machine i
is at most T . Therefore, the load of any machine with |Ji| ≤ 2 is at most T .

– |Ji| = 3. Since
∑

j∈Ji
pi,j > T , at most two jobs can be scheduled on ma-

chine i; case (c) is applied here, and the Machine Plan will allow at most
|Ji| − 1 = 2 jobs to be scheduled on machine i. If all three jobs in Ji are
small, then at most two jobs are scheduled on machine i and the load is at
most T . Otherwise at least one job is big and at most two jobs are small in



Makespan Min. with Job-Intersection Structure and Bounded Job Assign. 11

Ji, and at most one big job will be scheduled with a small job and so the
load is at most T + T/2 = (3/2)T . Therefore, the load of any machine with
|Ji| = 3 is at most (3/2)T .

– |Ji| = 4. First, we identify a few key observations that will simplify our
analysis. First, if ever case (d) is applied, d = 2 in the Machine Plan, so
at most one big job is scheduled with one small job and the load is at
most T + T/2 = (3/2)T . Thus we only need to consider the algorithm in
situations when it applies case (e) or case (f). In either of these two cases,
d = 3, so at most one big job is scheduled with two small jobs, as when three
small jobs are scheduled on machine i the load is at most (3/2)T . Recall that

the jobs in Ji are sorted in non-increasing order j
(i)
1 , j

(i)
2 , j

(i)
3 , j

(i)
4 . If there

are at least three big jobs and at most one small job, then
∑4

k=2 pi,j(i)k

> T

and this falls under case (d); thus we only need to consider below when there
are at most two big jobs and at least one small job in Ji.
• If all four jobs are small, then only case (f) applies as the sum of any

two small jobs on machine i cannot exceed T . Again, at most three small
jobs can be scheduled on machine i and the load is at most (3/2)T .

• If three jobs are small and one job is big, then either case (e) or case (f)
is applied by the algorithm. In case (e), if p

i,j
(i)
2
≤ T/3 then the sorting

of the jobs implies that the load is at most T + 2(T/3) = (5/3)T . Then,

observe that if p
i,j

(i)
2

> T/3 and
∑4

k=2 pi,j(i)k

≤ T , then
∑4

k=3 pi,j(i)k

<

T −T/3 = (2/3)T , and the load on machine i is at most p
i,j

(i)
1

+ p
i,j

(i)
3

+

p
i,j

(i)
4
≤ T + (2/3)T = (5/3)T . Next if case (f) is applied, then p

i,j
(i)
1

+

p
i,j

(i)
2
≤ T implies the load of machine i is at most p

i,j
(i)
1

+p
i,j

(i)
2

+p
i,j

(i)
3
≤

T + T/2 = (3/2)T .

• If two jobs are small and two jobs are big, only case (e) applies as the

sum of any two big jobs exceeds T . Job j
(i)
2 is big, so observe that∑4

k=2 pi,j(i)k

≤ T ⇒ ∑4
k=3 pi,j(i)k

< T − (T/2) = T/2. Thus, the load

of machine i is at most T + T/2 = (3/2)T .

Hence, the maximum load of a machine with |Ji| = 4 is at most (5/3)T .

Therefore, we obtain the following results that match the inapproximability
bounds given by Corollary 1 and Corollary 2.

Theorem 2. There is a polynomial-time algorithm for R||Cmax when every ma-
chine can process at most two, three, or four jobs with approximation ratio 1,
3/2, or 5/3, respectively.

Corollary 3. There is a polynomial-time algorithm for R||Cmax restricted to
job-intersection graphs that are either triangle free or diamondless with approx-
imation ratio 1 or 3/2, respectively. Furthermore, there is a polynomial-time
algorithm for R||Cmax restricted to bipartite job-intersection graphs.
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7 A (2 − 1/(` − 1))-Approximation Algorithm for
Restricted Assignment with Two Job Lengths and
Bounded Job Assignments

Let α, β ∈ Z+, where α < β. Recall that the restricted assignment prob-
lem with two job lengths is a special case of R||Cmax where every processing
time pi,j ∈ {pj ,∞} and job length pj ∈ {α, β}. Note that if every job has the
same job length, this is equivalent to the restricted assignment problem with
unit job lengths and can be solved in polynomial time [21]. So below we con-
sider instances where at least one job differs in length, and every machine can
process at most ` ≥ 3 jobs. By modifying the algorithm we gave in Section 6
along with using some known results, we obtain an approximation algorithm
with approximation ratio 2− 1/(`− 1). Like in Section 6, there is an estimate T
of the optimal makespan where binary search is performed to find the smallest
value for T such that the algorithm below produces a schedule with makespan
at most (2− 1/(`− 1))T . Below we assume if not all of the jobs are scheduled,
the algorithm reports REJECT. Given estimate T , consider the following cases in
the order provided.

1. If there is a job j ∈ J with no machine i where pi,j = pj ≤ T , report REJECT.
2. α > T/(`− 1) and β ≤ T . Apply the (2− α/β)-approximation algorithm of

Chakrabarty et al. [5] for estimate T . If a schedule exists with makespan T ,
this algorithm will compute a schedule with makespan at most

(
2− α

β

)
T <

(
2−

T
`−1
T

)
T =

(
2− 1

`− 1

)
T.

3. α ≤ T/(`− 1) and β ≤ T/2. Use the algorithm of Lenstra et al. [18]. In this
algorithm a fractional solution is computed using linear programming, and
then a rounding is performed to integrally assign the remaining fractionally
assigned jobs. If OPT ≤ T , then solving the linear program guarantees
the load of each machine is at most T , and the rounding step schedules at
most one additional job per machine. Thus, the makespan is at most T +
max{α, β} ≤ T + T/2 = (3/2)T .

4. α ≤ T/(`−1) and T/2 < β ≤ T . Use the algorithm given in Section 6 except
than in Step 2, for every machine i proceed as follows:
– If every job in Ji is small, it is possible for every job in Ji to be scheduled

on machine i, so use the Machine Plan with d = |Ji|. The load of the
machine i is at most |Ji|α ≤ |Ji|(T/(`−1)) ≤ `(T/(`−1)) ≤ (2−1/(`−
1))T as ` ≥ 3.

– There is at least one big job in job set Ji. If β +
∑

j∈Si pj ≤ T , use the
Machine Plan with d = |Si|+ 1, where Si is the set of small jobs of job
set Ji. At most one big job can be scheduled with every job in Si, so the
load of a machine i is at most β +

∑
j∈Si pj ≤ T .

If β +
∑

j∈Si pj > T , then either at most one big job can be scheduled
with |Si| − 1 small jobs or at most all |Si| small jobs are scheduled
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together. Add arcs according to the Machine Plan with d = max{|Si|, 1}.
Since at least one job in job set Ji is big, |Si| ≤ |Ji| − 1 ≤ ` − 1. If
every job that is scheduled on machine i is small, then the load is at
most |Si|α ≤ (`− 1)(T/(`− 1)) = T . Otherwise, at most one big job can
be scheduled with |Si|−1 small jobs and the load of machine i is at most

β + (|Si| − 1)α ≤ T + ((`− 1)− 1)
( T

`− 1

)
=
(

2− 1

`− 1

)
T.

Theorem 3. There is a (2−1/(`−1))-approximation algorithm for the restricted
assignment problem with two job lengths when every machine can process at
most ` ≥ 3 jobs.

8 Inapproximability Results for Job-Intersection Graphs
with Cliques

For any instance I = (P = (pi,j),m, n) of R||Cmax with some pi,j = ∞, there
is another instance I ′ = (P ′ = (p′i,j),m, n) of R||Cmax with the same optimal
solution but every p′i,j 6= ∞: set p′i,j = pi,j for any pi,j 6= ∞; and if pi,j = ∞,
set p′i,j to some prohibitively large number, for example, p′i,j = npmax + 1 where
pmax is the largest processing time that is not ∞ in P . For T ≤ npmax, there is
a schedule for instance I with makespan T if and only if there is a schedule for
instance I ′ with makespan T . Every job in instance I ′ can be scheduled on any of
the machines, so the job-intersection graph GJ for I ′ is the complete graph Kn.
We note that an alternate construction to arrive at the complete job-intersection
graph is given at the start of Section 4 in [15]. Therefore, we can carry forward
the inapproximability lower bound 3/2 from the graph balancing problem with
two job lengths given in Section 5.

Corollary 4. There is no k-approximation algorithm with k < 3/2 for R||Cmax

restricted to instances where the job-intersection graph is the complete graph Kn,
unless P = NP.

From Corollary 4, R||Cmax restricted to any superclass4 of the complete job-
intersection graphs inherits the 3/2-inapproximability lower bound of R||Cmax.
We name some of these graph classes as they are of interest from a graph-
theoretic standpoint. To begin, define a job-intersection graph as a threshold
graph if it can be constructed by repeatedly performing the following two op-
erations: insert an isolated vertex; or insert a vertex and add edges from this
vertex to every other vertex presently in the graph, this vertex is called a domi-
nating vertex. All complete graphs are threshold graphs, and three superclasses
of threshold graphs are interval graphs, cographs, and split graphs [4, Corollary
7.1.1]. Note that all these graphs belong to the house-free graphs. A graph is
called house free if the graph does not contain as an induced subgraph the house
graph, shown in Figure 6.

4 For a comprehensive list of superclasses, we recommend the Java application at
http://www.graphclasses.org.

http://www.graphclasses.org
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Fig. 6. The house graph.

Corollary 5. There is no k-approximation algorithm with k < 3/2 for R||Cmax

restricted to instances where the job-intersection graphs belong to either the
threshold graphs, interval graphs, cographs, split graphs, or house-free graphs,
unless P = NP.

9 Conclusion

In this paper we have established several graph classes where R||Cmax with sim-
ple job-intersection structure is either polynomial-time solvable or 3/2-inapproximable.
ForR||Cmax with bounded job assignments we have shown that there are polynomial-
time algorithms with approximation ratios less than two when the bounds are
small. As we have demonstrated, the structure of a job-intersection graph presents
another way of investigating the complexity of R||Cmax. However, our work
does not address planar job-intersection graphs. R||Cmax restricted to planar
job-intersection graphs seems like it might not be polynomial-time solvable nor
3/2-inapproximable, we would be interested in its complexity.
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