
Electronic version of an article published as Parallel Processing Letters, Volume 23, Issue 3,
2013, Pages 1350010 DOI: 10.1142/S0129626413500102 c© World Scientific Publishing Company,

http://www.worldscientific.com/toc/ppl/23/03

PARALLEL ALGORITHM FOR SECOND–ORDER RESTRICTED

WEAK INTEGER COMPOSITION GENERATION FOR SHARED

MEMORY MACHINES

DANIEL R. PAGE∗†

Department of Computer Science, University of Manitoba,

Winnipeg, Manitoba, Canada R3T 2N2

Published article can be found at http://www.worldscientific.com/doi/abs/10.1142/S0129626413500102

Received December 2012

Revised April 2013
Communicated by I. Stojmenovic

ABSTRACT

In 2012, Page presented a sequential combinatorial generation algorithm for generalized
types of restricted weak integer compositions called second–order restricted weak integer

compositions. Second–order restricted weak integer compositions cover various types of

restricted weak integer compositions of n parts such as integer compositions, bounded
compositions, and part–wise integer compositions. In this paper, we present a parallel

algorithm that derives from our parallelization of Page’s sequential algorithm with a

focus on load balancing for shared memory machines.

Keywords: parallel algorithm, combinatorial algorithm, generation algorithm, computa-

tional number theory, weak integer compositions, restricted weak integer compositions

1. Introduction

In 2012, Page had introduced a new class of restricted weak integer compositions

called second-order restricted weak integer compositions (SORWICs), and an al-

gorithm for their effective generation (see [6]). Restricted types of integer compo-

sitions such as SORWICs have a variety of applications in fields such as compu-

tational chemistry, and statistical analysis. Let us define SORWICs. For n ∈ Z+,

s ∈ Z+\{0}, a weak n–composition of s is an n–sequence (a0, a1, . . . , an−1) of non–

negative integers with
∑n−1

i=0 ai = s. For a family R2
n = (R1

0, R
1
1, . . . , R

1
n−1) of sets

of non–negative integers called a second–order restricted set , a SORWIC C
R2

n
s,n is an

n–composition of s, (a0, a1, . . . , an−1), where ai ∈ R1
i , for all i, 0 ≤ i ≤ n − 1. For

example, given s = 10, n = 4, and R2
4 = ({0, 1, 2}, {3, 6}, {1, 3, 5, 6, 7}, {1}),

∗Author Address: Box 4 Group 555 RR5 Winnipeg, Manitoba, Canada R2C 2Z2.
†Email Address: drpage@pagewizardgames.com

1

http://www.worldscientific.com/doi/abs/10.1142/S0129626413500102

2 Parallel Processing Letters

C
R2

4
10,4 = {(2, 6, 1, 1), (0, 6, 3, 1), (1, 3, 5, 1), (0, 3, 6, 1)}.

SORWICs have the potential to be highly output sensitive. Since SORWICs

cover most types of restricted compositions or restricted weak compositions, the

output can be of size 0 ≤ |CR2
n

s,n | ≤
(
n + s− 1

n− 1

)
. The upper bound is the number

[7] of weak integer compositions (WIC). When the second–order restricted set is

totally unrestricted, the SORWIC is a WIC.

The algorithm we will present is designed for the shared memory architecture

as we wish to exploit global memory, and make use of threads which do not require

much synchronization as we construct the sought SORWIC. Our construction is

geared towards making use of only a small number of threads in the system, but

these threads are to share the tasks required by the algorithm in a balanced manner.

There is no parallel algorithm yet in the literature which constructs this com-

binatorial object directly. Other parallel algorithms [1, 3, 5, 8, 9] do exist for less

general definitions which are covered by the definition of a SORWIC. Unfortunately,

these parallel algorithms would require pruning a potentially large set following ex-

ecution, which is undesirable. In this paper we will present a parallel algorithm to

construct any SORWIC based on Page’s sequential algorithm in [6]. To begin, we

need to modify the original sequential generation algorithm for effective paralleliza-

tion.

2. Streamlining the Sequential Algorithm

We would like to modify Page’s algorithm for generating second–order restricted

weak integer compositions (SORWIC) found in [6] in such a way that we reduce

the structure of the sequential algorithm, and exploit data locality. This means we

would like to streamline this algorithm so the construction does not rely on s for

building the queues. When we design the parallel algorithm, this property could

help design a partitioning scheme to balance the load of work since there would be

no data dependencies between any of the sequences. Next, we shall show how we

can modify the algorithm to suit this property without modifying the computational

time–complexity of the original procedure.

In the original sequential algorithm in [6], the algorithm uses a single array

of queues Q[0],. . . ,Q[s − 1] to store sequences (a0, a1, . . . , an−1) as they are being

constructed, and Q[s] to store completed sequences which are a part of the SORWIC

C
R2

n
s,n . Each queue Q[i] contains all the non–negative integer sequences which sum

to i in the current round. For example, suppose s = 20. A sequence (1, 3, 2, 0, 0, 0)

may not be complete yet if this were round = 2 in the algorithm, but is stored in

Q[6] for the next induction round where the fourth position would be determined

for any copy of this sequence. For any instance the algorithm operates on, there are

exactly (s + 1) queues, which is not ideal for a large s. This is a data dependency

we wish to resolve to streamline the algorithm.

To solve this problem, we know all the sequences in the original algorithm in [6]

Parallel Algorithm for SORWIC Generation for Shared Memory Machines 3

are of length n, where n is the number of parts for all the sequences that construct

the desired SORWIC. In the algorithm sequences that form the set are represented

as integer arrays. Instead of having only n positions, we will increase the length by

one where we will store the sum of the sequence of first n non-negative integers. From

our previous example, the same sequence could be represented as (1, 3, 2, 0, 0, 0, 6)

without needing a specific queue which stores all sequence of sum six. Instead of

entering sequences into particular queues, place the queue number from the original

algorithm into this new position. With such, we remove the data dependency on

the parameter s in the algorithm’s line of queues, and can be streamlined into

three queues for our modified sequential algorithm. These three queues are Q[0][0],

Q[1][0], and Qf .

The first two queues defined are called the workbench, and Qf is the finished

queue. For the workbench, the sequences stored in Q[(round+1) mod 2][0] are copied

based on the edge–sets in the original algorithm and entered into Q[round mod 2][0]

with our sum update in the final index of each given sequence. If the last index equals

s, instead we enter the array representing the sequence into the finished queue Qf .

Unlike the original algorithm, the base step must also check this last index to see

if it may be entered into Qf . The variable carryT ill remains the same as in the

original algorithm. This variable is used to look ahead to ensure invalid sequences

which meets a sum s are not entered into Qf . The variable carryT ill must be less

than or equal to zero for the base step to enter any sequence into Qf which is not a

check needed in the original algorithm. At the end of the algorithm, we output the

first n positions of each array before termination in Qf . The steps of this modified

procedure remain identical to the original algorithm except for our modifications.

There is one drawback to our modified sequential algorithm. Since we have re-

moved the need for queues which represent their corresponding sums, we no longer

can predict their contents without checking all the sequences. Our modified algo-

rithm does not have optimizations such as the reachability test which can be found

in the original algorithm. This is a drawback because for very sparse restricted sets,

the final induction round’s reachability test deletes all the contents of the queues

which never reach Q[s]. Next, let us use the streamlined version of Page’s algorithm

to design a parallel algorithm to generate any SORWIC.

3. Parallelizing the Streamlined Sequential Algorithm

Let us parallelize the streamlined variation of Page’s generation algorithm for SOR-

WIC from the previous section. If we are to successfully parallelize this algorithm,

then the induction step must have no two threads needing to lock to write to the

same place in global memory. Since this algorithm can generate sets at most size(
n + s− 1

n− 1

)
, critical sections in the algorithm would become a massive bottleneck

and degrade the performance. A lock–free construction requiring as little time for

synchronization of threads between induction step rounds is vital. This requires a

near–optimal load balancing scheme as we construct sequences between threads.

4 Parallel Processing Letters

We will show such is possible for any number of threads t. Also, another property

we would like to exploit are the loops in the original algorithm that are used in the

streamlined procedure. We have two goals in mind for this algorithm. Primarily, we

wish to design an algorithm that acheives good absolute speedup with a small num-

ber of threads. Lastly, we desire an algorithm which provides near–optimal load

balancing so threads are active in the system with as little forking, and joining

required by the shared memory machine.

3.1. Lock–free Induction Step and Load Balancing Scheme

For our parallel algorithm, we want all the threads to generate sequences indepen-

dent of one another without any critical sections between induction step rounds. Let

us extend the workbench so each thread has its own row of t queues. In the stream-

lined sequential algorithm we had Q[0][0], and Q[1][0] (see Figure 1). Instead of

having only two queues, let us extend each second dimension to now represent a t×t
array of queues (see Figure 2). Also, the algorithm will have exactly t finished queues

Qf [0], Qf [1], . . . , Qf [t− 1] which we will denote as finished[0], . . . , finished[t− 1].

Each thread can enter valid non–negative integer sequence that sum to s into its

own corresponding queue.

[
Q[0][0] Q[1][0]

]
Fig. 1. Modified sequential algorithm workbench construction

Now, this leads to two questions. First, how is each row in the workbench used

in parallel by threads in each induction step round? Furthermore, how does this

construction attempt to balance the number of sequences in each row of queues for

each thread?


Q[0][0][0] Q[0][0][1] · · · Q[0][0][t− 1] Q[1][0][0] Q[1][0][1] · · · Q[1][0][t− 1]
Q[0][1][0] Q[0][1][1] · · · Q[0][1][t− 1] Q[1][1][0] Q[1][1][1] · · · Q[1][1][t− 1]

...
. . .

...
...

. . .
...

Q[0][t− 1][0] Q[0][t− 1][1] · · · Q[0][t− 1][t− 1] Q[1][t− 1][0] Q[1][t− 1][1] · · · Q[1][t− 1][t− 1]


Fig. 2. Parallel algorithm workbench construction

Each thread operates on its own collection of non–negative integer sequences.

As we had in the streamlined sequential algorithm, the algorithm switches between

the two t × t arrays in the exact same manner in terms of the rounds in the first

dimension. Threads in the induction step will use all the queues in a row based

on its identication or thread id. Let us define an integer array of length t called

distribution. Initially for any thread z, distribution[z] := z. For any thread z,

Parallel Algorithm for SORWIC Generation for Shared Memory Machines 5

the algorithm assigns distribution[z] := (distribution[z] + 1) mod t when any new

sequence enters into a queue. If any thread z generates a valid sequence which sums

to s, then it may be entered into finished[z].

Our method of balancing the load of sequences for each induction step round

is to cyclically allocate sequences along each column z for thread z. Sequences

entering into the opposing set of queues are placed by the value distribution[z]

which represents the row number. In the next induction step round, we operate

on the opposing set of queues now along the rows where we have placed all the

new incomplete sequences, as before. This technique spreads sequences along rows

so threads have sequences to operate on even though a row may not have any

sequences initially. Restricted sets can have the potential to be very sparse due to

the general nature of this problem. For instance in the base step of this algorithm,

sequences are distributed along the first column of the first set of queues using

cyclic distribution. So threads initially may not have tasks to complete if |R1
0| < t.

This method permits even such cases to spread out sequences as the induction step

progresses due to the initial values used for distribution.

For any non-negative thread number z < t and queue number i < t, every row

entry Q[(round+1) mod 2][z][i] is unique to any Q[round mod 2][distribution[z]][z].

Consequently, every thread z will have its own row to leave sequences from t queues,

and one column to enter sequences into t queues cyclically based on the value

distribution[z]. Threads can operate independent of one another throughout the

entire induction step with only synchronization at the end of each round. Therefore,

there is no locking required by any thread in the entire induction step.

3.2. Exploiting Loops

As in the original algorithm by Page in [6], the streamlined sequential algorithm

makes use of numerous for loops. We can parallelize each of these by making use

of static block distribution of the iterations. Some loops in the algorithm are not

worth parallelizing due to only having a small number of iterations, but others can

become very time consuming for larger inputs. These loops include the base step,

and the loops contained in the construction step.

In the base step, we require two critical sections to be effectively parallelized.

In the base step we are entering newly created sequences where the first posi-

tion is determined along the first column of the first set of queues. We are using

distribution[0] to carry this out, which needs to be updated each time. We do not

want two threads to attempt to enter into workbench queue Q[0][distribution[0]][0]

at the same time, so we include this in a critical section along with the update to

distribution[0]. Also, we must consider if s ∈ R1
0. If we enter a sequence which has

sum s already, it must be entered into the finished queues. If such is the case employ

a critical section, and enter the sequence into finished[0]. Following the base step,

distribution[0] is reset back to be zero for its use in the induction step.

In the construction step we have two loops we wish to parallelize. These loops

6 Parallel Processing Letters

are the construction of a two dimensional linked list for building the edge–sets,

and the creation of the edge–sets. Since both of these steps have other loops inside

with dependencies we can distribute statically the outermost loop iterations to the

threads to complete only. With such let us summarize the parallel algorithm.

4. Parallel Algorithm

Now, we shall describe our derived parallel algorithma as a whole from the previous

section, and verify its correctness. In this section we will use Q, and workbench

synonymously to represent the workbench construction.

4.1. Algorithm

As inputs the parallel algorithm has four parameters. The first parameter is R map

which is a n× (s + 1) boolean two–dimensional array. Each row v represents mem-

bership to position v. When a bit is set to one at column j in row v, then j ∈ R1
v

or simply j is allowed in position v for any possible valid sequence contained in the

sought second–order restricted weak integer composition (SORWIC). For example,

if s = 9, n = 4, and restricted set R2
4 = ({0, 1, 4, 6}, {1, 3, 5, 8}, {0, 1}, {0, 9, 2}),

then,

R map :=


1 1 0 0 1 0 1 0 0 0

0 1 0 1 0 1 0 0 1 0

1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

 .

Next, the second parameter is s, the sum or order of the SORWIC. The third

parameter is n, the number of parts or simply the number of positions allowed in

every sequence of the sought SORWIC. Lastly the last parameter, a positive integer

num threads is the number of threads to be used by the parallel algorithm.

As in the original sequential algorithm in [6], the parallel algorithm has five

sections:

(i) Preliminary construction,

(ii) Trivial cases,

(iii) Base step,

(iv) Construction step,

(v) Induction step.

Now, we describe our parallel algorithm for shared memory machines to generate

any sought SORWIC (Figure 3). Each corresponding component of the algorithm is

summarized throughout this section and can be referred to in more detail as referred

below in Appendix A.

aThe algorithm is described in object–oriented style pseudo–code with C++ OpenMP compiler

specific directives.

Parallel Algorithm for SORWIC Generation for Shared Memory Machines 7

void SORWICGeneration (bool [] [] R map , int s , int n , int num threads){
Algorithm 1 . 1 : P r e l im ina r i e s
Algorithm 1 . 2 : T r i v i a l Cases
// generat ing beyond two pos i t i ons i s required . . .
i f ((n>2)&&!empty){
Algorithm 1 . 3 : Base Step
Algorithm 1 . 4 : Construct ion Step
Algorithm 1 . 5 : Induct ion Step

//output the f i n i s h ed queue l i n e (only va l i d sequences w i l l e x i s t) .
#pragma omp s i n g l e
for (i :=0; i<num threads ; i++){
while (f i n i s h e d [i] . s i z e ()>0){
int [] sequence := f i n i s h e d [i] . f r on t () ;
pr intSequence (sequence , n) ; // pr in t ac tua l sequence
f r e e (sequence) ;
f i n i s h e d [i] . l e ave () ;
}
}
} ; //SORWICGeneration

Fig. 3. Algorithm 1: Parallel algorithm for SORWIC generation

In the preliminary construction (see Figure A1), the algorithm builds the

workbench, the line of finished queues, distribution, and rules out parameter com-

binations which will yield an empty set for the SORWIC. If n = 1, or n = 2, then

the algorithm carries out each respective trivial case (see Figure A2), and moves

directly to outputting the resulting SORWIC. For n = 1, we only check if the sum

itself can be placed into a single position. When n = 2, the algorithm checks all pairs

of non–negative integers and observe if such a sequence is valid or not. In either

trivial case, the algorithm enters any valid sequences into finished[0] sequentially

in the same manner as the original algorithm in [6]. If n > 2, then the procedure

begins the base step (refer to Figure A3). In the base step, the algorithm creates

our first sequences based on the first row of R map, and places them along the

first column in the first set of queues as described in Section 3.1 for the base step.

Next, the construction step (see Figure A4) builds (n−2) edge–sets that dictate the

possible values a sequence can generate into new copies based on position n of each

sequence. Recall the last position n stores the current sum of any given sequence,

while positions zero through (n− 1) are the actual non–negative integer sequence.

Once the edge–sets are constructed, the algorithm in the induction step (refer to

Figure A5) inductively builds sequences based on the sum of each the sequence.

Sequences leave the active queues of the workbench and are copied to create new

sequences based on the edges. After this, any sequences created are entered into

the non–active workbench queues or finished queues following the technique we

described in the previous section (see Section 3.1). For any round < (n − 2), for

every sequence the procedure carries out the main induction round step (see Figure

A6). Otherwise, the algorithm determines the last two positions in the final induc-

tion round step (see Figure A7). Finally, after the induction step for n > 2, the

algorithm outputs the sought SORWIC.

8 Parallel Processing Letters

4.2. Correctness

In the parallel algorithm, the algorithm shares almost most of its structure from

the original algorithm in [6]. One particular significant modification was the use

of the workbench, and finished queues instead of the structure of (s + 1) queues

representing corresponding sums. For preliminary portions of the algorithm and

base case, it is the simple manner of replacing terms or parallelizing loops. The

construction step is identical to the original sequential algorithm only with loop

parallelism involved. The portion where we see a difference in the algorithm is in

the induction step, which is the workhorse of this algorithm. By division of parts,

we will focus on showing the correctness by proving the correctness of the induction

step. If the induction step is correct, then by composition, the entire algorithm is

correct.

Lemma 4.1. The sequential streamlined generation algorithm we developed from

the original generation algorithm by Page in [6] in Section 2 is correct.

Proof. Since we know the original algorithm is correct by [6], we wish to apply

a reduction to our sequential streamlined generation algorithm to show it is also

correct.

To replicate the behaviour of the original sequential algorithm we take both

queues Q[0][0], and Q[1][0] and sort each by sum. Recall that every sequence has

a current sum which can be found in the last position of the integer array storing

the sequence. Since the algorithm doesn’t take order of sequences into account

in its output, we only care about if a sequence is a newly generated sequence or

not. Once Q[0][0], and Q[1][0] are sorted, partition each queue into s queues by

grouping each respective queue’s contents by sum into Q[0][0]0, . . . , Q[0][0]s−1, and

Q[1][0]0, . . . , Q[1][0]s−1. Each queue will now contain the sequences which belong to

originally either Q[0][0], or Q[1][0] by their respective sum. Count the total number

of sequences for the (round + 1) mod 2 set of queues and store these values in an

array. For any given induction step round, link each pair of queues by their sums

in a particular order. For the two queues that represent all the sequences that sum

currently to i, Q[(round + 1) mod 2][0]i is entered first, and Q[round mod 2][0]i is

entered last. Call this queue Q[i]. Now at any given iteration of the induction step,

the array that stores the counts of sequences tells the algorithm how many sequences

are left to operate on. To be traversed, we can start at Q[s − 1], then decrement

down to zero inclusively. Lastly, label Qf as Q[s]. This is the same as in the original

algorithm in [6]. Therefore, by this reduction, the sequential streamlined generation

algorithm we developed from the original is correct.

Theorem 1. The parallel algorithm for SORWIC generation terminates printing

C
R2

n
s,n .

Parallel Algorithm for SORWIC Generation for Shared Memory Machines 9

Proof. For t ≥ 1, let A(t) be the statement, A(t): For t threads, the parallel

algorithm for SORWIC generation terminates printing C
R2

n
s,n .

Base Step (t = 1): The statement A(1) says for one thread the parallel algorithm for

SORWIC generates terminates printing the sought SORWIC C
R2

n
s,n . When we have

one thread, this is the streamlined variation of the original algorithm. By Lemma

4.1, A(1) holds.

Base Step (t = 2): For A(2) to hold, the parallel generation algorithm must correctly

terminate for two threads. For t = 2, we have a two 2 × 2 arrays of queues in the

workbench. For two threads, thread one operates in any particular round along the

queues in row one, and enters the results into the queues of column one cyclically

unless the sequence sums to s, where the algorithm will enter into finished[0]. In

a similar manner, thread two operates for any round along row two, and enters

sequences into the queues of column two of the opposing set of queues, unless the

sum is s for a sequence where we enter into finished[1]. Link all the queues in

the first set of queues together in any particular order through enter operations.

Similarily, do the same for the second set of queues in the workbench. Link both

finished queues finished[0], and finished[1] in any particular order. Label the three

new queues we have constructed Q[0][0],Q[1][0], and Qf . By Lemma 4.1, A(2) holds.

Inductive Step (A(k)→ A(k+1)): Fix some k ≥ 2, let A(k) be the statement, A(k):

For k threads, the parallel algorithm for SORWIC generation terminates printing

C
R2

n
s,n . Assume A(k) holds. Now we wish to show A(k + 1) holds as well. Using the

induction hypothesis, since A(k) holds, then for k+1 threads, we have an additional

row, or column in each set of queues. From A(k) we have constructed Q[0][0], Q[1][0],

and Qf where we have the first k rows and columns entered from each set of queues

respectively. In the first set of queues in the workbench, in any particular order

enters the last column of queues, and the last row of queues (excluding the final

one, to avoid overlap) into Q[0][0]. Do the same with the second set of queues,

and enter these queues into Q[1][0]. We have one additional finished queue, enter

finished[k] into Qf . By Lemma 4.1, A(k + 1) holds.

Therefore, by the principle of mathematical induction, for t ≥ 1, A(t) holds.

5. Results

We considered two properties in experimentation. These two properties are load

balancing, and speedup. All of our experiments were executed on a single node

of a shared memory machine called Helium at the University of Manitoba. With

sixteen processors, each processor is a Dual Core AMD Opteron Processor 885 with

processor speed of 1 GHz. Each processor has a cache of size 1024 KB. Let us first

consider load balancing.

10 Parallel Processing Letters

5.1. Load Balancing

Theoretically, the balance of the number of sequences between threads is the most

important property to be met. In our results we used the largest amount of work the

algorithm could process, a weak integer composition of n–parts (WIC). Since one

can predict the number of sequences in each round, it serves as a useful benchmark.

As we have an exact number, we can compare the algorithm’s balance of number of

sequences per thread valg by the ideal number of sequences processed by each thread

vper. To measure this error, we use the approximation error. In this circumstance,

the approximation error is, error =
valg − vper

vper
.

A case we had selected is when we have a WIC where n = 12, s = 20, and

number of threads is eight. It is important to recall that this combinatorial object

can be output sensitive. This test case will result in a set of size 84,672,315 at the

end of the algorithm.

Table 1. Load balancing approximation error for a WIC case (n = 12, s = 20, t = 8).

round : 1 2 3 4 5 6 7 8 Final

Thread 1 2.8571 3.8961 1.0728 0.3388 0.3953 0.0414 0.0348 0.0825 0.0110

Thread 2 6.6667 1.2987 0.1920 0.4141 0.0745 0.0827 0.0427 0.0199 0.0185
Thread 3 6.6667 0.2597 1.1858 0.3576 0.0113 0.0730 0.0028 0.0211 0.0137
Thread 4 6.6667 0.2597 0.3727 0.1129 0.2552 0.0304 0.0455 0.0528 0.0392

Thread 5 27.6191 1.2987 1.4342 0.6211 0.0971 0.3150 0.0233 0.0385 0.0066
Thread 6 2.8571 1.8182 0.0113 0.3012 0.2868 0.1630 0.0208 0.0233 0.0003
Thread 7 0.9524 1.2987 2.2699 0.1129 0.1197 0.1423 0.0423 0.0432 0.0256

Thread 8 2.8571 4.4156 1.5246 0.0376 0.0610 0.0110 0.0489 0.0290 0.0137

Average 7.1429 1.8182 1.0079 0.2870 0.1626 0.1073 0.0326 0.0388 0.0161

Fig. 4. (Left) The average approximation error as the algorithm processes through each induction

step round. (Right) The balance of sequences before the final round of the induction step between
threads and queues in the workbench.

Table 1 gives all the calculations for every induction step round for our particular

instance. On average, as the algorithm progresses, the load balances uniformly across

Parallel Algorithm for SORWIC Generation for Shared Memory Machines 11

all threads. From Figure 4, we can see when the algorithm will process its most

work that the balance of number of sequences is near–optimal. We observed that

on average the load balances already within one percent by round = 3 for many

instances. Instances where it may take longer to reach near–optimal load balancing

between threads are those where we have a very sparse restricted set. These results

remained consistent for s = 40, and s = 60 as well. The self-balancing effects caused

by cyclically allocating sequences through the workbench allows for eventually near–

optimal load balancing between threads.

5.2. Absolute Speedup

In our experiments, we used three different types of second–order restricted weak

integer compositions (SORWIC). We will focus on weak integer compositions (WIC)

once again for our experimental results. For SORWICs, a feature to consider care-

fully is the choice of n, and s. Increasing n or s does not necessarily increase the

cardinality of the sought SORWIC. Without this in mind, this may cause sporadic

results as the cardinality can change dramatically. So we will present results only

for weak integer compositions as these objects monotonically increase in size.

In exploring all our tests, a common effect observed was the rapid saturation of

speedup partially due to Amdahl’s law when the number of threads is increased to

a larger value for a fixed problem instance [2]. Using Gustafson’s law [4] to increase

speedup, one may need to increase a proper combination of s, n and the number of

threads which reflects in our results. We predict saturation and speedup degradation

also occurs due to the exponential growth of accesses to global memory which can

be costly if the bus is small in the shared memory machine. This is due to our

lock–free construction when the number of threads is large, or when the output is

very large. Since this algorithm is ideal for a small number of threads, this is not

of concern. This algorithm theoretically has absolute speedup of t, the number of

threads used by the algorithm as n grows large.

Fig. 5. Our speedup results for generating WIC (n = 7,s = 60) (90, 858, 758 sequences).

12 Parallel Processing Letters

For our WIC tests, we observed n = 1, . . . , 7, s = 20, 40, 60, and varied the

number of threads between one and eight. For n = 7, experimentally we observed

peak absolute speedups of 2.21 (t = 8), 2.01 (t = 5), 2.37 (t = 4). For our largest

tests, we observed saturation following the peak absolute speedups, but the satura-

tion decreased gradually never below one in our tests. Thus, for a small number of

threads this algorithm can outperform the sequential algorithm, and make effective

use of all the threads allocated to the algorithm.

6. Conclusions

We have presented a new parallel algorithm for shared memory machines that gener-

ates second–order restricted weak integer compositions efficiently for a small number

of threads. To design our algorithm, we introduced a modified variation of Page’s

algorithm found originally in [6] for generating SORWIC that exploits data locality.

With such, we introduced a load balancing technique that provides eventually near

optimal result, and a lock–free algorithmic construction. Following the design of

our algorithm, we proved the correctness of the parallel algorithm, and presented

some of our experimental results. Our results show our parallel algorithm can out-

perform the sequential algorithm for large instances, and can provide an excellent

load–balancing scheme. We hope this algorithm can open the exploration of other

generalized classes of combinatorial objects where parallel computation has not yet

been explored.

Acknowledgements

Thank you Dr. Parimala Thulasiraman for all you have taught me through the

graduate course Advances in Parallel Computing at the University of Manitoba.

References

[1] S. G. Akl and I. Stojmenovic, Parallel algorithms for generating integer partitions and
compositions, The Journal of Combinatorial Mathematics and Combinatorial Com-
puting, 13 (1993), 107–120.

[2] G. Amdahl, Validity of the Single Processor Approach to Achieving Large–Scale Com-
puting Capabilities, AFIPS Conference Proceedings. 30 (1967) 483–485.

[3] P. Gupta and G. P. Bhattacharjee, Parallel generation of permutations, The Computer
Journal. 26(2) (1983), 97–105.

[4] J. L. Gustafson, Reevaluating Amdahl’s Law, Communications of the ACM. 31(5)
(1988), 532–533.

[5] Z. Kokosinski, Generation of integer compositions on a linear array of processors,
Proceedings of Second International Conference “Parallel and Distributed Processing
Techniques and Applications” PDPTA96. (1996) 56-64.

[6] D. R. Page, Generalized Algorithm for RestrictedWeak Composition Generation, Jour-
nal of Mathematical Modelling and Algorithms. 10.1007/s10852-012-9194-4 (2012) 1–
28, Springer Netherlands.

[7] E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and
Practice, Prentice-Hall Inc.. 1977.

Parallel Algorithm for SORWIC Generation for Shared Memory Machines 13

[8] H. Shen and J. Evans, A new method for generating integer compositions in parallel,
Parallel Algorithms and Applications. 9 (1996), 101-109.

[9] I. Stojmenovic, Listing combinatorial objects in parallel, The International Journal of
Parallel, Emergent and Distributed Systems. 21(2) (2006), 127–146.

Appendix A Algorithm 1.1 – Algorithm 1.7

All the contents of this section correspond to portions of pseudo–code for a more

detailed description of the parallel algorithm given in Section 3.

int i , j , k ;
i :=0;
j :=0;
k :=0;
//Pre l iminaries
unsigned long d i s t r i b u t i o n [num threads] ; // w i l l hold the weights .
for (i :=0; i<num threads ; i++){
//Load Balancing i n i t i a l va lues
d i s t r i b u t i o n [i] := i ; // ass ign ing i n i t i a l a l l o ca t i on scheme
}
bool empty :=0; //assume the se t i s not empty f i r s t
int c a r r yT i l l =−1;//used to check i f we can enter yet into bank of Q f .
i f ((num threads <=0) | |(n=0) | | (n<0) | | ((n==0)&&(s >0))){
empty:=true ; // the r e su l t i n g se t i s empty .
}
//Assume R map i s binary matrix
queue [] [] [] workBench:=new queue [2] [num threads] [num threads] ; //workbench
queue [] f i n i s h e d :=new queue [num threads] ; //bank of f i n i s h ed queues

Fig. A1. Algorithm 1.1: Preliminary constructions for algorithm

// t r i v i a l cases for n=1 and n=2. . .
// i f n=1, j u s t check i f the sum can be placed in a s i n g l e pos i t i on
i f (n==1 && ! empty){
i f (R map [0] [s]){
int [] e lement :=new int [1] ;
e lement [0] := s ;
f i n i s h e d [0] . ente r (element) ;
}
}
// i f n=2, j u s t check the pairs
i f (n==2 && ! empty){
for (i :=0; i<=s ; i++){
i f (R map [0] [i] && R map [1] [s−i]){
int [] e lement :=new int [2] ;
e lement [0] := i ;
element [1] := s−i ;
f i n i s h e d [0] . ente r (element) ;
}
}
}

Fig. A2. Algorithm 1.2: Trivial cases for parallel algorithm

14 Parallel Processing Letters

// car ryT i l l i s ca l cu l a t ed
// fo l l ow ing t h i s round (car ryT i l l) , zeroes can be placed in .
for (i :=(n−2); i >0; i−−){
i f (R map [i] [0]==0 && ca r r yT i l l == −1){
c a r r yT i l l :=(i −1);
}
}
//Base Step
#pragma omp p a r a l l e l for private (j) schedu le (stat ic)
for (i :=0; i<=s ; i++){
int [] e lement :=new int [n+1] ;
for (j :=0; j<(n+1); j++){
element [j] :=0 ;
}
i f (R map [0] [i]==1){
element [0] := i ;
element [n] := i ;
i f (element [n]< s){
#pragma omp c r i t i c a l
{
workBench [0] [d i s t r i b u t i o n [0]] [0] . ente r (element) ; // enter into workbench
d i s t r i b u t i o n [0] := (d i s t r i b u t i o n [0]+1)%num threads ;
}
}
else {
i f (c a r r yT i l l <=0){// I f we al low a l l zeroes in sequence , enter i t !
#pragma omp c r i t i c a l
{
f i n i s h e d [0] . ente r (element) ;
}
}
}
}
}
d i s t r i b u t i o n [0] := 0 ;

Fig. A3. Algorithm 1.3: Base step for parallel algorithm

Parallel Algorithm for SORWIC Generation for Shared Memory Machines 15

//Construction Step
//2D l inked l i s t for bu i l d ing edge−s e t s
LinkedList [] [] l inkEdges :=new LinkedList [n−2] [s +1] ;
#pragma omp p a r a l l e l for private (i , j) s chedu le (stat ic)
for (k :=1;k<(n−1);k++){
for (i :=0; i<s ; i++){
for (j :=s−i ; j>=0;j−−){
i f (R map [k] [j]){
i f ((c a r r yT i l l <=(k−1)) | | (i+j != s)){
l inkEdges [k−1] [i] . i n s e r t f r o n t (i+j) ; //Add to f ront of the l i s t
}
}
}
}
}
//now copy edge−s e t s to a 3D array for constant access
int [] [] [] edges :=new int [n−2] [s +1] [s +1] ;
#pragma omp p a r a l l e l for private (j , k) schedu le (stat ic)
for (i :=0; i<(n−2); i++){
for (j :=0; j<s ; j++){
int s i z eL := l inkEdges [i] [j] . s i z e () ;
for (k :=0;k<s i z eL ; k++){
edges [i] [j] [k] := l inkEdges [i] [j] . f r on t () ;
l inkEdges [i] [j] . d e l e t e f r o n t () ;
}
}
}

Fig. A4. Algorithm 1.4: Construction step of parallel algorithm

int round :=1; //round begins at 1.
// Induction Step . . .
#pragma omp p a r a l l e l private (round , i , j , k)
{
int th r ead id :=omp get thread num () ;
for (round :=1; round<=(n−2); round++){
int workIn :=(round+1)%2;
int workOut :=(round)%2;
// for each thread , use a row of the work bench .
for (k :=0;k<num threads ; k++){
for (int countQDone :=0; countQDone<num threads ; countQDone++){
//work on each queue in our thread
int workLeft :=workBench [workIn] [th r ead id] [countQDone] . s i z e () ;
for (i :=0; i<workLeft ; i++){
int [] e lement :=workBench [workIn] [th r ead id] [countQDone] . f r on t () ;
bool endReach :=0;
workBench [workIn] [th r ead id] [countQDone] . l e ave () ;
i f (round< (n−2)){
Algorithm 1 . 6 : Main round induct ion
}
else {
Algorithm 1 . 7 : F ina l round induct ion
}
f r e e (element) ; // f ree the sequence .
}
}
}
//now synchronize for next induct ion step round .
#pragma omp ba r r i e r
}
}
}

Fig. A5. Algorithm 1.5: Entire induction step of parallel algorithm

16 Parallel Processing Letters

//main round induct ion
for (j :=0; j<(s+1) && ! endReach ; j++){
int value := edges [round −1] [element [n]] [j] ;
i f (va lue !=−1){
int [] copy :=copySequence (element , n+1);//copy a l l (n+1) pos i t i ons
copy [round] := value−copy [n] ;
copy [n] := value ;
i f (copy [n]==s){
f i n i s h e d [th r ead id] . ente r (copy) ;
}
else {
workBench [workOut] [d i s t r i b u t i o n [th r ead id]] [t h r ead id] . ente r (copy) ;
}
d i s t r i b u t i o n [th r ead id] :=(d i s t r i b u t i o n [th r ead id]+1)%num threads ;
}
else {
endReach :=1;
}
}

Fig. A6. Algorithm 1.6: Main round induction for parallel algorithm

// f i n a l round induct ion
for (int j :=0; j<(s+1) && ! endReach ; j++){
int value := edges [round −1] [element [n]] [j] ;
i f (R map [n−1] [s−value]){
i f (va lue !=−1){
int [] copy :=copySequence (element , n+1);//copy the sequence and sum
copy [round] := value−copy [n] ;
copy [n−1]:=s−value ;
copy [n] := value ;
f i n i s h e d [th r ead id] . ente r (copy) ; //done
}
else {
endReach :=1;
}
}
}

Fig. A7. Algorithm 1.7: Final round induction for parallel algorithm

