The final publication is available at www. springerlink.com,
(URL to published version: http://www.springerlink.com/content/w31081rw26p610t1/?MUD=MP)

Generalized Algorithm for
Restricted Weak Composition Generation

Generation Algorithm for
Second-Order Restricted Weak Compositions

Daniel R. Page

Received: December 1, 2011 / Accepted: July 4, 2012 (Journal of Mathematical Modelling and Algorithms)

Abstract

This paper presents a new algorithm that arrives at a generalized solution for the genera-
tion of restricted weak compositions of n-parts. In particular, this generalized algorithm cov-
ers many commonly sought compositions such as bounded compositions, restricted compo-
sitions, weak compositions, and restricted part compositions. Introduced is an algorithm for
generating generalized types of restricted weak compositions called first-order, and second-
order restricted weak compositions.

Keywords Restricted Compositions - Restricted Weak Compositions - Generalized Algo-
rithms - Generalized Compositions - Generation Algorithms - Enumeration Algorithms -
Integer Compositions - Weak Integer Compositions - Enumeration - Combinatorics -
Computational Number Theory

Mathematics Subject Classification (2000) 68R05 - 68R01

1 Introduction

With a long, vast, and rich history, the study of integer compositions (see [4]) has grown
in the past decade with the rise of applications in numerous fields such as combinatorics,
computational number theory, and computational chemistry. In particular, the spark of in-
terest in the generation of compositions has been of attention lately in the theory of com-
positions. The term enumeration can apply in two very different ways. These two ways are
counting the elements of a set, while the other is to generate by listing the members of a set
directly. The primary interest of this paper is the generation of the elements which compose
a particular weak integer composition. The reason for this interest in generation instead of
counting is that the cardinality of a solution for a generation problem is the same as the so-
lution for a counting problem in this context. Generation problems of this kind take the form
of some initial restrictions, with the hopes of finding a means of returning a set of elements

Daniel Page

Winnipeg, Manitoba, Canada

Tel.: +204-802-0155

E-mail: drpage @pagewizardgames.com

Present address: Box 4 GRP555 RR5, Winnipeg, Manitoba, Canada, R2C 272

www.springerlink.com
http://www.springerlink.com/content/w31081rw26p610t1/?MUD=MP

2 Daniel R. Page

which meet those restrictions.

Algorithms which can generate restrictive types of compositions have been of interest
in the past decade [[1121/4,91111/12]. I wish to present an algorithm which can enumerate any
second-order restricted weak composition. In turn this type of composition can enumerate
most commonly sought types of n-compositions. The types of compositions which of in-
terest in this paper are restricted weak compositons. Before we consider the definition of a
restricted weak composition, let us consider the basis of these combinatorial objects, just a
typical composition.

Every n-composition has two components, namely the number of parts, and the order
of a composition [4]]. The number of parts is the number of elements in any sequence con-
tained in any given integer composition. The number of parts is also known as the length of
a composition, which we will denote as n. The order of a composition is also known as the
sum of a composition. That is, for any sequence of non-negative integers (ag,ai,...,an—1),
the sum of a composition is 27;()1 a; = s. In this paper we will be assuming that for any com-
position intended to be generated, a given s,n are chosen for a generation. In the literature
such compositions are referred to as n-compositions. The traditional definition of a compo-
sition only allows strictly positive integers but, compositions are only a special case of a
type of compositions known as weak composition. Weak Compositions are also referred to
as n-compositions with non-negative integer parts in the literature.

For readers who are familar with integer partitions, a composition is simply a combi-
natorial object like a partition, except a composition is all the permutations in the additive
partitioning of an integer. Since a typical composition is a permutation of all the elements
contained in an integer partition.

Definition 1 Givenn € Z", and s € Z"U{0}. A weak composition Cy , is the set of any non-

negative integer sequences ¢ = (0y, 01, ...,0,_1), where 6; € Z" U {0}, and Z:.lz_ol o, =s.

For example, Cs 3 = {(4,0,0),(0,4,0),(0,0,4),(3,1,0),(3,0,1),
(0,3,1),(1,3,0),(0,1,3),(1,0,3),(2,2,0),
(2,0,2),(0,2,2),(1,1,2),(1,2,1),(2,1, 1) }.

n+s—1

—1
tions can also be called unrestricted weak compositions, because no restrictions have been
placed. Instead of diving right into popular types in study, let us take a more generalized
approach which could cover most types of compositions.

Since we know n-compositions with positive integer parts are simply a special case of
weak compositions, we could restrict the non-negative integer sequences such that, zeroes
are not allowed. That is to restrict that value. Many types of compositions restrict the inte-
ger values allowed to be used in such integer compositions forming restricted compositions.
What is desired is a definition of restricted weak compositions so that most families of com-
positions or weak compositions are covered.

A weak composition Cj, has a cardinality of |C; ,| =) [10]. Weak composi-

Definition 2 Givenn € Z™, and s € ZT U {0}, a restricted weak composition is any subset
of a weak composition Cy .

We should consider restrictions first placed over all the positions because naturally it
is less restrictive than if we were to apply restrictions to each part. Examples of types of
compositions which restrict all the parts to a single set of non-negative integers are bounded
compositions [9]]. Let us define such a restriction as a first-order restriction. Since we are
restricting a set of values, we require a set to contain this information, let us refer to this as

Generalized Algorithm for Restricted Weak Composition Generation 3

a first-order restricted set.
We can immediately define the first type of restricted weak composition desired for
generalization. That is, a first-order restricted weak composition.

Definition 3 Given n € 7", s € Z* U{0}, and restricted set R' C {0,1,...,s}. A first-

. .. Rl n. .]
order restricted weak composition Cs(,n) is the set of non-negative integer sequences G =
(607 (S PR anl), where O, € Rl, and 27;()1 O; = 3.

Using the previous example with a first-order restricted set R! = {0,2},

3
% = {(2.2,0),(2,0,2),(0,2,2)},

With such a generalization, any restriction placed over all the parts may be considered.
What is important about this definition is that the restricted set doesn’t need to be contigous
over a single integer domain. Unlike some recent solutions, the restrictions in this form do
not need to be contiguous, and permit any values desired. But, this would lack a covering
of any restriction over the parts. Thus, we need another generalization which is even more
restricted than first-order restricted weak compositions. That is, for this further generaliza-
tion, each part can be restricted by some first-order restricted set.

This means the first-order restricted weak composition is a special case of this form
where all the restricted sets are equal for all elements r € R!, where 0 < r <. So, we would
have n first-order restricted sets R(l) ,R } Yo ,R,Ll . The option for further generalization would
be to consider each restricted set with it’s own unique position as an n-tuple. This is defined
as the second-order restriction.

Next, we can define the most generalized type of restricted weak composition over parts.
This generalization is the second-order restricted weak composition.

Definition 4 Givenne€Z*, s € Z"U{0}, and second-order restricted set RZ = (R}, R},...,R}),

n—1
where each first-order restricted set Ril C{0,1,...,s}. A second-order restricted weak com-
2
position Cﬁz is the set of any non-negative integer sequences o = (0y, Oy, ...,0,_1), where
o; € R}, and Zl’.’;ol o;=s.

For example, with a second-order restricted set RZ = ({1,2},{0},{2,3}),

4%3 = {(17073)7(27072)}~

Additionally, let us introduce the definition of the power second-order restricted weak
2

.. . . R
composition, which we will denote as € ;.

Definition 5 Given n € Z*, s € Z* U {0}, and some second-order restricted set R2. The
2
power second-order restricted weak composition of ij,’, is,

2 2
ER = {(a0.ar,....a) €CN | j<s,i<n).

Now with both generalized types of restricted weak compositions, the two generation
problems sought can be defined. Both problems have a solution in the form of a generation
algorithm in this paper.

I\n
Problem 1 Given n € Z, s € Z" U {0}, and first-order restricted set R I generate Cs(ﬁ) ,
and return this set.

Problem 2 Givenn € Z", s € Z+ U{0}, and second-order restricted set R = (R}, R},...,R}),

n—1

R2 .
generate C},, and return this set.

4 Daniel R. Page

Problem 2 is of interest in this paper, because an algorithm which can generate second-
order restricted weak compositions can construct many restricted weak compositions, and
most commonly sought types of n-composition, including problem 1.

The main focus for the solution of problem 2 is to construct restricted weak composi-
tions as an application. Since the second-order restricted weak composition is defined as
the most general form over the restriction of parts, the algorithm outputs a very efficient
to prune subset for the construction of any sought restricted weak composition. Restricted
weak compositions can take the form of existence problems for particular construction prob-
lems. Furthermore, the same principles could be applied to seek out the existence of many
other combinatorial constructions.

The ability for an algorithm to allow the defining of subsets of compositions through
different restricted sets is a new idea algorithmically. Generating this combinatorial object
effectively solves any composition generation problem of this form.

2 History of the Problem

Fairly recently researchers have been trying to find methods of avoiding or restricting
weak compositions. In this section I will only be covering some of the major recent results
due to the broadness of research done in this field of generation.

The idea of generating subsets of compositions was becoming a topic of interest because
in practice, generating a whole weak composition would be impractical. This is due to the
combinatorial growth of the number of integer sequences found in a composition for large
input sizes. In 2000, Timothy Walsh accomplished two tasks which raised awareness of
generation algorithms of this kind [12].

1. Modified Klingsberg’s Algorithm for weak compositions which was developed with
Knuth-Klingsberg gray codes originally by restricting each part in the form of a n-
bounded composition [5/6]). This is also known as an (mg,m,...,m,_1)-bounded com-
positions, where 0 < m; < s. This is a significant restriction to include in a composition
in contrast to an unrestricted weak composition. This is a type of restricted weak com-
position.

2. Modified the mechanism in the Bitner-Ehrlich-Reingold method contributed by Ehrlich
for sequencing gray codes, into a form to generate this new modified gray code in O(1)
time per integer sequence [10]].

In terms of our definitions, Walsh’s weak composition algorithm for restricted weak

compositions constructs a list looplessly for Cf_é, where R2 = ({0,...,bo},...,{0,...,b,1})
. This algorithmic ability to contruct restricted weak compositions is fairly general.

In 2003, Timothy Walsh developed an algorithm which takes his year 2000 result and
generalizes it so it can generate gray codes in O(1) worse-case time per word for almost
all gray codes [13]]. Walsh’s paper establishes that gray codes can infact be used in a prac-
tical manner by generalizing all the main techniques of representing gray codes [3]. Any
loopless gray code generation algorithm can be done efficiently using this algorithm. There
have been several augmentations of Walsh’s algorithm to exhaust or generate types of com-
positions, or partitions, or permutations which have been developed [1.2,4/7,8LOl11]]. To
augment this result, all one needs to do is follow the construction for how many words are
required.

Recently in 2011, there was a very unique take on n-bounded compositions with gray
code solutions by V. Vajnovszki and R. Vernay [[11]]. Their result along with developing a

Generalized Algorithm for Restricted Weak Composition Generation 5

new technique for generating types of permutations was to take the concepts from Walsh’s
loopless algorithm for bounded compositions, and generalize it further. Their result gave
a procedure for constructing b-bounded compositions in their section on restricted compo-
sitions [[1L1]]. In this construction, each part allows integers in the sequence to be of val-
ues 0 <[< b; <s, where [l,k]| are given. Vajnovszki and Vernay’s construction can con-
struct b-bounded compositions of a positive integer s looplessly. In terms of our defini-

tions, this is only a second-order restricted weak compositions of the form ij’z, where
R2=({l,(1+1),...,bo},....{L,(I+1),...,b,_1}). Thus far, this is the most recent result.

All modern solutions if applied to problem 2 with some modifications all suffer an ad-
ditional Q(nk) worst-case time-complexity, where & is the size of the list those algorithms
can output. For large n, this can be very costly. This comes with the cost of generating the
entire list and we want to avoid generating the entire list if possible with a solution for this
problem. This comes from the limitations of not being able to restrict over non-contigous
bounds. These algorithms cannot constuct most restricted weak compositions without such
modifications, but such an algorithm is what is sought in this paper with my new algorithm.
The new algorithm employs a new technique, and does not rely on gray code based solu-
tions, nor recursion based solutions.

3 Algorithm

3.1 Second-Order Restricted Weak Composition Generation Algorithm

Consider the Second-Order Restricted Weak Composition Generation Algorithm.

Problem: Generate the second-order restricted weak composition, CSRE,.
Inputs: Integer arrays R}, ... ,R,Ll (restricted set of the second-order).
Non-negative integer s (order of the composition).

Non-negative integer n (number of parts of the composition).

2
Output: Queue Qs], which contains all the elements of Cg;;.

Queue compositionSecondOrder(int[][] R,int s,int n){
boolean empty := false;
if((n=0)V (1< 0)V ((n = 0)A(s > 0)) v (IRl =0)){
empty := true; / /This is empty set.

(Alg. 1.1) Preliminaries : Construct Q[0),...,Q[s] and Ryqp.
if (n=1) A (mempty)){
(Alg. 1.2) Trivial Case : n=1.

if((n=2) A (mempty)){
(Alg. 1.3) Trivial Case : n=2.

if ((n>2) A (—empty){
(Alg. 1.4) Construction Step : Construct the edge sets.
(Alg. 1.5) Base Step : Concatenate the first position.
(Alg. 1.6) Induction Step : Perform (n—2) rounds of generation.

2
return Q|s]; //Qls] contains all valid integer sequences for Cf’],
}/ /compositionSecondOrder

Algorithm 1: Second-Order Restricted Weak Composition Generation

6 Daniel R. Page

The idea of this algorithm is to group non-negative integer sequences of length n by
their sums, and generate the sequences together left, to right. These sequences are generated
through constructing n-tuples inductively through rounds. Upon termination, the algorithm
returns a queue containing integer arrays, which represents the expected second-order re-
stricted weak composition that contains n-tuples.

The algorithm consists of three main steps. These steps are the construction step, the
base step, and the induction step. The construction step of the algorithm constructs edge-
sets from bit vectors which represent the second-order restricted set R2.

The algorithm has three inputs. The first parameter is the second-order restricted set
modelled by n integer arrays. Each row of the array R[w] represents a first-order restricted
set RL 0 <w < (n—1). The last two parameters are the sum s, and the number of parts n.

Let us run through an example to help understand the algorithm. Suppose we wish to

2
generate the second-order restricted weak composition C? ¢ In this example,
RZ = ({0,1},{0,1},{1},{1,2},{1},{0}). The object sought is the set of all non-negative
5

integer 6-tuples of the form (ag,a;,az,a3,a4,as), where, Z ay=5and q; € R,‘C, assuming
k=0
0<k<eé.
As inputs for our example, the parameters for the algorithm would be:

- R:= ({Oa 1}7{07 l}a {1}7{172}7 {1}7{0})!

- s5:=5,

- n:=6.
Now, let us consider the initial set up in order to proceed to the preliminaries.

Queue|] Q := new Queuels+1];//0[0],0[1],...,0ls]
BitVector[] Ryap := new BitVector(n][s+ 1]; / /n bit vectors of (s+1) bits
Sfor(int i :=0;i < n;i++){
//For each round ...
for(int j:=0;j < |R[i]]; j++){
if (R[i][] = 0) A (R[] [j] < 5)){

Ruap[i[R[]][j]] := 1;//Set bits for elements over the interval [0,s].

Algorithm 1.1: Preliminaries: Construct Q[0],...,Q[s] and Ryqp.

The use of queue data structures are essential to this algorithm. The algorithm uses
exactly (s+ 1) queues to represent the sums from O to s, inclusively. The algorithm will

transform each integer array R[i] into a bit vector Ryp[i]. The entire array of bit vectors

Ryuap represents the second-order restricted set R,%, which is given as the input integer array

R. Preliminaries of the algorithm will construct n bit vectors, each with (s+ 1) bits. Each
first-order restricted set is modelled by each bit vector, where each position set in the bit
vector represents the presence of a non-negative integer, corresponding to the numeric value
of the position. Now continuing our example, we construct queues Q[0], Q[1],...,Q[5] first.
Then we construct the array of bit vectors Ry, where in our example:

]
Riap(1] = (1,1,0,0,0,0,0),
Rmap[z} = (07 17070707070)3
Ruap(3] = (0,1,1,0,0,0,0),
Rinapl4] = (0,1,0,0,0,0,0),
Rmap[s} = (13050303()30’0)‘

Generalized Algorithm for Restricted Weak Composition Generation 7

Next, since n > 2 in our example, we move directly to the construction step. These
trivial cases check each of the positions and enter valid sequences into Qls].

i (Rmap[O][s]){
int] | element := new int[1];
element|0] := s;
Q|s].enter(element);

Algorithm 1.2: Trivial Case: n=1.

Sfor(int i :=0;i < s3i++){
1f (Rinap [0][1] A Runap [1]1s — i]){
int|] element := new int[2];
element[0] := i;
element([1]:= s—1i;
Qls].enter(element);

Algorithm 1.3: Trivial Case: n=2.

int carryTill :== —1; / /Following this main round, zeroes are allowed to be placed into n— tuples.
for(int i:= (n—2);i > 0;i——)
if (" Rimapi][0] A carryTill = —1){
carryTill .= (i—1);

LinkedList|[|[] linkEdges := new LinkedList[n—2][s + 1];
Sfor(int k:=1;k < (n—1);k++){
for(int i:=0;i < s;i++){
for(int j:=s—1i;j>0; j——){
if (Rmap [K][71){
if ((carryTill < (k—1))V (i+j #5)){
)

linkEdges(k — 1][i].add(i+ j);//Add to front of the list.

}

}
int[||][] edges := new int[n —2|[s+ 1][];
//Now copy to the three dimensional array for instant access.
Sfor(int i :=0;i < (n—2);i++){
Sfor(int j:=0;j <s;j++){
Node curr := linkEdges|i][j].head,
edgesli]|j] := new int[|linkEdges[i][j]|];
for(int k:= 0;k < |edgesli][j]|; k++){
edgesli][jl[k] := currdata;
curr := currnext();

}

edges|i][s] := new int[0];

Algorithm 1.4: Construction Step: Construct the edge-sets.

8 Daniel R. Page

With the second-order restricted weak composition generation algorithm, the algorithm
constructs (n — 2) edge sets. As sequences are being constructed, the task of each edge set
is to direct the flow of passing along sequences for each round between the queues.

In the induction step, we use an edge set to reduce the amount of testing we need to do
for forming new copies, and placing these new copies into queues for the next round. This
is desirable because most restricted weak compositions are not the entire set of the weak
composition, but a subset of the weak composition. An edge set reduces the number of tests
by eliminating the redundant transitions outside of the restricted set, and having to check
each bit of Ryapi].

An important optimization is computing carryTill. We want Qs] to store only integer
arrays which sum to s. If these sequences were to be placed into Q[s] before approaching the
last round, zeroes must be allowed for subsequent positions, or the algorithm must erase the
data in Q[s]. To avoid needing to erase at any time sequences in Qs], if the number of the
main round is greater than carryTill, then if permitted, queues may enter arrays into Q[s],
as instructed by the edge sets. In our example, carryTill is 3.

For each round, edges are used from edges[round — 1]. Edges are accessed by round to
represent each restricted set R,{, where 1 <k < (n—2). Now to continue with our example
by constructing four edge sets.

Table 1 The edge sets constructed for the induction step in our example.

edgesl0] 0 1 2 3 edges[1] 0 1 2 3
0: 0 1 0: 1
1: 1 2 1: 2
2: 2 3 2: 3
3: 3 4 3: 4
4: 4 4:
5: 5:
edges2] 0 1 2 3 edges3] 0 1 2 3
0: 1 2 0: 1
1: 2 3 1: 2
2: 3 4 2: 3
3: 4 3: 4
4: 4: 5
S: 5:

Each row m of a given edge set represents the edges a given queue Q[m] could enter
contained n-tuples into queues Q[g], for each edge g in the row m. The value placed into a
sequence for given position is calculated by computing (g —m). Next, we perform the
base step of the algorithm.

for(int i :=0;i < s;i++){
int[] element := new int[n).
if (Rmap[0)[i]){
element|[0] := i;
Qli].enter(element); / [Let this element enter for Qli];.

Algorithm 1.5: Base Step: Concatenate the first position.

Generalized Algorithm for Restricted Weak Composition Generation 9

In the base step, we construct for each non-negative integer a € R(l), an n-tuple where
a is in the first position, and the remaining positions in the sequence are zeroes. It is as-
sumed when the integer arrays (n-tuples) of length n are instantiated, the n-tuple contains
only zeroes as the above pseudo-code describes. If Ryqp[0][i] is set, then the new integer
array (n-tuple) (i,0,0,...,0) is entered into Q[i] for round 1. A queue Q[i] prepared for
round j will be denoted as Q[i;. Q[i]; may also denote the number of non-negative integers
presently marked in the sequence excluding the final round. In the base step, we are prepar-
ing for round 1.

Continuing our example, since Ryuqp[0] = (1,1,0,0,0,0), we enter the non-negative in-
teger sequences leading with 0, and 1 into Q[0], and Q[1] respectively.

Thus, in each queue we have:

Q[5]1 =p<>r

Q4] =p<>r

O[3]1 =p<>r

0[2]1 =p<>r

Q[l]l =5< (1,0,0,0,0,0) >F
[0]

Now, we are prepared for the induction step where we perform (n — 2) rounds of gener-
ation.

Sfor(int round := 1;round < (n—2);round++){
if ((~Rmap[round][0]) A (round < (n—2)){
Qls].erase(); / /Remove all the elements in Q|s].

Sfor(inti:=(s—1);i>0;i——){
if (round = n—2){//Check if Qli|n—2 is reachable to Q|s],—
(Alg. 2.6.1) Final Round : Reachability Test.

int countDown := |Q[i]|;
for(int elem := 0;elem < countDown;elem~++){
int[] element :== Qli].remove();//Remove from Q[i],puna to use.
if (round < (n—2)){//Main induction round
for(int j:=0;j < |edges[round|[i]|; j++){
int value := edges[round —1][i][j];
int[|copy := copy(element); | /Copy of integer array.
copylround] := value — i;
Q[value].enter(copy); / /Let the copy enter Q[value] oung+1-

else{//The final induction round.
(Alg. 2.6.2) Final Round : Last round of generation.

Algorithm 1.6: Induction Step: Perform (n —2) rounds of generation.

In the induction step, the algorithm traverses the queues starting at i = (s — 1), and
decrements to the left-most queue Q[0], as visualized below. This process will take each
queue, and copy valid integer sequences contained, and for each edge based on the edge
set, will enter the copies in the instructed queues. The queues can be visualized as a line of

10 Daniel R. Page

queues, sequences never move to the left, always to the right, or remain constant. An impor-
tant note is that the algorithm doesn’t touch Q[s], except when queues to the left enter valid
non-negative integer sequences. Q[s] will be built inductively through the induction step.

Round 1: Start at i = 4. Since queues Q[4], Q[3], Q[2] are empty, proceed to i = 1. In this
round, we are restricted to using any non-negative integer a; € R}. That is the restricted set

={0,1}.
=1

[1]1 =5< (1,0,0,0,0,0) >F is being considered:
Q[5]r =p<>r
O[d4)r =p<>r
0[3]r =p<>F
Q[z]Z =p< (17170707070) >F
Q[l]z =p< (17070707070) >F
Q[O]l =p< (0 0,0,0,0 0) >F

1:=0

[0]; =5< (0,0,0,0,0,0) >F is being considered:
0[5]2 =p<>F
Q[d]r =p<>r
0[3]r =p<>F
Q[Z]Z =p< (17 170707070) >F
Q[1], =5< (0,1,0,0,0,0),(1,0,0,0,0,0) >F
Q[O]Z =p< (0707 07 Oa Oa 0) >F

o[l 0[4]; O[5]
Zugoxiriun ! 0
H
2 o[l]2 O[22 (32 Q[4]2 Q[5]2

Fig. 1 A visualization of the first main round in our example. The algorithm takes every sequence from each
queue, right to the left, and creates copies on each edge to enter.

Round 2: Start at i = 4. Since queues Q[4], Q[3] are empty, proceed to i = 2. In this round, we
are restricted to using any non-negative integer a, € R). That is the restricted set Ré ={1}.
0[2] =< (1,1,0,0,0,0) >F is being considered:

Q[5]3 =p<>F

O[4]3 =p<>F

Q[3]3 =B< (1 1]707()’0) >F

0[2]3 =p<>F

Q[1]> =5< (0,1,0,0,0,0),(1,0,0,0,0,0) >
0[0]> =5< (0,0,0,0,0,0) >#

Generalized Algorithm for Restricted Weak Composition Generation

0[5]3 =p<>r
O[4]3 =p<>r
Q[3]3 =B< (17 17 1707070) >F
Q[Q’]?’ =B< (07]7]707070)a(17071707070) >F
O[1]3 =p<>F
Q[O]z =B< (0,0,0,0,0,0) >F
=0
0[0], =5< (0,0,0,0,0,0) >F is being considered:
Q[5]3 =p<>F
Q43 =p<>r
Q[3]3 =p< (17 L, 1707070) >F
0[2]3 =< (0,1,1,0,0,0),(1,0,1,0,0,0) >p
Q[1]3 =B< (07071707070) >F
Q0] =p<>F
Q[0], o[z 0[2 O[3
0[0]3 ofl]s 023 0[33

Fig. 2 A visualization of the second main round in our example.

0[4]

O[4]3

Round 3: Start at i = 4. Since the queue Q[4]3 is empty, proceed to i = 3. In this round, we are
restricted to using any non-negative integer a3 € R;. Note that, the restricted set Ré ={1,2}.

0[0]3 o[l o[o35

Ath
4 position {

0[0]4 O[1]s 0[2l4 0[3l4

Fig. 3 A visualization of the third main round in our example.

O[4]3

O[4s

Daniel R. Page

1:=3

0[3]3 =< (1,1,1,0,0,0) > is being considered
Q[5)4 =p<>F
0[4]s =p< (1,1,1,1,0,0) >
0[3]4 =p<>r
0[2]3 =5< (0,1,1,0,0,0),(1,0,1,0,0,0) >F
Q[l]f’} =p< (0707 1707070) >F
Q[0 =p<>F

=2

[2]s =< (0,1,1,0,0,0),(1,0,1,0,0,0) >F is being considered:

0[3)4 =p<>r
0[4]s =< (0,1,1,2,0,0),(1,0,1,2,0,0),(1,1,1,1,0,0) >
Q[3]4 =< (0717]717070)7(17071717070) >F
0[2]4 =p<>F
Q[1]3 =< (0707 1707070) >F
Q[0 =p<>F

Q[3 =< (0,0,1,0,0,0) >F is being considered:
Q[5]s =p<>F
0Q[4]4 =5< (0,1,1,2,0,0),(1,0,1,2,0,0),(1,1,1,1,0,0) >g
0[3]s4 =8< (0,0,1,2,0,0),(0,1,1,1,0,0),(1,0,1,1,0,0) >¢
0[2]4 =5< (0,0,1,1,0,0) >F
Q1] =p<>F
Q[0 =p<>F

i:=0

Q[0]3 =p<>F is being considered:
O[5]s =p<>r

ls =p< (0,1,1,2,0,0),(1,0,1,2,0,0),(1,1,1,1,0,0) >
3)4 =< (0,0,1,2,0,0),(0,1,1,1,0,0),(1,0,1,1,0,0) >

1]y =p<>F

o4
ol
Q[2]4 =< (0 0717170 0) >F
ol
0[0]s =p<>F

Since Q[0]3 was empty, the algorithm did not change the queues in i = 0 for round = 3.

Now, the main rounds of the induction step are completed, now the algorithm moves
to the final round, because (6 —2) = 4. This round is two parts, the reachability test, and the

last round of generation. Let us consider a definition for reachability.

Definition 6 A queue Qli] is reachable to Q[s] if, and only if there exists two non-negative

integers x €R! 5, y €RL_|, such that s = (i+x+y).

Generalized Algorithm for Restricted Weak Composition Generation 13

boolean reachable := false;
for(int j:=0;(j < |edges[round —1][i]|) A (wreachable); j++){
int valueR := edges[round — 1][i][j];
if (Rmap[n — 1][s — valueR]){
reachable := true;
}

}
if (—reachable)
Qli].erase(); //No elements in Qli],—2 can reach Q|s],—1.

Algorithm 1.6.1: Final Round: Reachability Test.

It appears Q[4] is the only queue which is reachable in our example. If a queue is not
reachable, then the contents of those queues will be deleted by the algorithm. The reacha-
bility to Q[s] became important in this example, because majority of the elements sitting in
our queues were not going to sum to the value of 5. So the algorithm erases the contents of
0[0],...,0[3], leaving Q4] alone.

for(int j:=0;j < |edges[round — 1][i]]; j++){
int value := edges[round — 1][i][j];
if (Rmap[n— 1][s — value]){
int[Jcopy := copy(element); / /Copy of integer array.
copy[round] := value — i;
copyln—1] :=s—value;
Qls].enter(copy);//Let the copy enter Q[s],—1.

Algorithm 1.6.2: Final Round: Last round of generation.

The final round of this algorithm takes sequences from Qs — 1],...,Q[0] and places
them into Q[s]. This step operates exactly like a main round, except the algorithm only
creates a copy if copies can reach the last queue, Q[s]. This step merges the assignment
of two positions because we know the sum of every sequence, and can determine the first
(n—1) positions of any sequence by the ordering of the queues. The algorithm appeals to
Ruap[n — 1] for the final position, and Ryuqp[n — 2] for the second last position, to check the
validity of a sequence. Now in our example, we have reached round = 4. The algorithm
proceeds starting at i = 4.

Q[4]a =< (0,1,1,2,0,0),(1,0,1,2,0,0),(1,1,1,1,0,0) >F is being considered:
0[5]s =< (0,1,1,2,1,0),(1,0,1,2,1,0),(1,1,1,1,1,0) >F

]
Q[4]s =p<>r
Q[3]4 =p<>F
024 =p<>F
O[l]4 =p<>r
0[0]4 =p<>F

Since the remaining queues Q[3],0[2],Q[1], and lastly Q[0] are empty, at the end of the
final round we have only contents in the final queue, as expected.

14 Daniel R. Page

0[0]4 =g<>F is being considered:
0[5]s =< (0,1,1,2,1,0),(1,0,1,2,1,0),(1,1,1,1,1,0) >F

Ql4]s =p<>r
Q3]s =p<>r
Q[2]s =p<>r
O[l]s =p<>r
0[0]s =p<>F

Following the final round, the algorithm returns the elements contained in Q[5]. In our
example, the elements contained in Q[5] form the second-order restricted weak composition

Cﬁ, where RZ = ({0,1},{0, 1}, {1},{1,2}, {1}, {0}).

Now we have covered the generalized algorithm sought to solve both Problem I, and
Problem 2 respectively. That is, the generation algorithm for second-order restricted weak
compositions. Next, the correctness of the algorithm must be considered.

3.2 Correctness

Lemma 1 Suppose we are given any main round of the induction step r > 1, second-order
restricted set R2 = (R},R},...,R}_|), and s € Z* U{0}. If queues Q[0],Q[1],...,Qls] con-
tain integer sequences which are valid for the first r positions, then at the end of round r, only

valid integer sequences for the first (r+ 1) positions will be contained in Q[0],Q[1],...,Q|s].

Proof Let P(s) denote the statement: Given queues Q[0],, Q[1],,...,Q[s], containing inte-
ger sequences which are valid for the first r positions, then at the end of round r, only
valid non-negative integer sequences for the first (r + 1) positions will be contained in

Q[O}VJrlaQ[l]H»la ceey Q[S]r+l-

Base Step (s = 0): P(0) says that if we are given the queue Q[0], containing only inte-
ger sequences which are valid for the first r positions, then at the end of round r, only valid
integer sequences for the first (r+ 1) positions will be in queue Q[0],4 1. This is a trivial case
because either Q[0], only contains one valid integer sequence which sums to 0, or there are
no valid sequences in queue Q[0],. Since s = 0, the algorithm only has to check if 0 € R} to
check if all the sequences in Q[0], are valid. If 0 € R}, then the algorithm leaves Q[0], alone.
If 0 ¢ R!, then the algorithm deletes the contents of the queue because it is invalid. Since the
algorithm on this main round for s = 0 returns only valid integer sequences in Q[0],+1, P(0)
holds.

Base Step (s = 1): P(1) in this case states that if we are given the queues Q|0],, Q[1], which
contains valid non-negative integer sequences for the first r positions, then when the algo-
rithm reaches the end of round r, only valid sequences for the first (r+ 1) positions will be
contained in Q[0],+1,0[1],+1. Since s = 1, the algorithm begins the main round by consid-
ering Q[1],. If 0 € R}, then Q[1], is left alone. Otherwise the contents of Q[1], are deleted by
the algorithm. Next, the algorithm proceeds to evaluate the contents of Q[0],. If any integer
sequences are present in Q[0],, then these sequences are removed one at a time following
checking the second-order edge set, which models all the allowable positions in R/, for any
integer sequence of the round r. Upon each integer sequence removed in Q[0],, for each

Generalized Algorithm for Restricted Weak Composition Generation 15

element in R, a copy of the integer sequence is produced and concatenated with each re-
spective position, and entered into queues Q[0],41, and Q[1],1. Since all the non-negative
integer sequences are valid for the first (r 4 1) positions by the definition of a second-order
restricted weak composition, P(1) holds.

Inductive Step (P(k — 1) — P(k)): Fix some k > 1. P(k — 1) denotes the statement: Given
queues Q[0],,Q[1],...,0Q[k — 1], containing integer sequences which are valid for the first
r positions, then at the end of the round r, only valid non-negative integer sequences for the
first (r+ 1) positions will be contained in Q[0],+1,0[1]5+1,--., Ok — 1],41.

Assume that P(k — 1) holds. We wish to demonstrate the statement P(k): Given queues
[0}, 0[1];,...,0Q[k — 1],+1, Q[k], containing integer sequences which are valid for the first
r positions, then at the end of the round r, only valid non-negative integer sequences for the
first (r+ 1) positions will be contained in Q[0],+1,Q[1]r+1,--, 0k — 1]41, O[k]r+1-

We begin with knowing queues Q[0], Q[1],...,Qlk— 1], Q[k], having valid non-negative
integer sequences for the first r positions. Recall that in a main rounds of the induction step
of round we only allow positions which are contained in R!. This is modelled by the al-
gorithm through the use of the edge sets, which is constructed by the bit vectors Rqp[k] for
round k. This matches the definition of a second-order restricted weak composition, because
only a position at the (r+ 1)”’ position will be considered valid if that non-negative integer
isin R}.

Recall that each queue Q[i], in our array of queues represents all valid non-negative inte-
ger sequences of the first (r+ 1) positions which sum to i. For each queue Qi],, there is the
possibility of entering sequences upon removal into queues Q[i +m],. |, where m € R, That
is, for any potential queue QJi],, the entering of sequences following concatenation upon

removal are over at most Q[i],+1,0[i +]y+1,...,0lk — 1],+1,Q[k]+1. This means queues
O[i)y+1,0[i4+1]+1, . .., Qlk— 1,41 have valid non-negative integer sequences. By the induc-
tion hypothesis, queues Q[0],41,Q[1],41,...,0[k — 1],+1 all have valid non-negative integer

sequences for the first (r+ 1) positions, when s = (k— 1), but not s = k yet.

We wish to demonstrate P(k) holds. Queue QIk], contains all valid integer sequences
which have sum of k. If O € R}, then we do not delete the contents of Q[k], for Q[k],1.
The induction hypothesis is not enough to sufficiently produce the main round r since every
queue Q[m], must have the ability to enter sequences into Q[k],. If (s —m) € R!, then
include in the edge set an edge leading to Q[k],11 from Q[m],. Thus, given valid integer se-
quences for queues Q[0],,Q[1],...,Q[k],, we have valid integer sequences for each queue
Q[m];+1. So P(k) holds.

By mathematical induction, we have proven that for all s > 1, the statement P(s) is
true. Therefore, if queues Q[0], Q[1],..., Q[s] contain integer sequences which are valid for
the first r positions, then at the end of round r, only valid integer sequences for the first
(r+ 1) positions will be contained in Q[0], Q[1],...,Q[s] in the algorithm.0J

Lemma 2 Suppose we are given any second-order restricted set R2, and s € 7" U {0}. If
queues Q[0],Q[1],...,Qls] contain non-negative integer sequences which are valid for the
first position, then at the end of main round r > 0, only valid integer sequences for the first
(r+ 1) positions will be contained in Q[0],Q[1],...,Q]s].

Proof Let P(r) denote the statement: Given queues Q[0],,Q[1],...,Q[s], containing non-
negative integer sequences which are valid for the first position, then at the end of main
round r > 0, only valid integer sequences for the first (r+ 1) positions will be contained in

queues Q[O]H-va[l]r-H g 7Q[S]r+1~

16 Daniel R. Page

Base Step (r = 1): P(1) says that if we are given queues Q[0];,...,Q[s]; which contain
valid integer sequences of length 1, then at the end of round 1, only valid integer sequences
of length 2 will be contained in the queues Q[0]»,...,Q[s]>. Applying Lemma I, this case
holds because we are given valid integer sequences of length 1. The algorithm will construct
valid integer sequences of length 2 in this main round as a consequence. Thus, P(1) holds.

Inductive Step (P(d — 1) — P(d)): Fix some d > 1. P(d — 1) denotes the statement: Given
queues Q[0]4—1,0[1]4—1,-.-,0Js]4—1 containing non-negative integer sequences which are
valid for the first posmon, then at the end of main round (d — 1) > 0, only valid integer
sequences for the first d positions will be contained in Q[0]4, Q[1]4,- - -, Q]s]a-

Assume that P(d — 1) holds. We wish to demonstrate the statement P(d): Given queues
0[0]4,0[1]4,-.-,0Q[s]s containing non-negative integer sequences which are valid for the
first position, then at the end of main round d > 0, only valid integer sequences for the first
(d + 1) positions will be contained in Q[0]y+1,Q[1]4+15-- -, O[s]a+1-

By the induction hypothesis, P(d — 1) says that the algorithm will construct valid in-
teger sequences with d non-negative integers. By Lemma 1, the algorithm constructs valid
non-negative integer sequences of length (d 4 1) in a main round d in the algorithm. Thus,
P(d) holds.

By mathematical induction, we have proven that for all r > 1, the statement P(r) is
true. Therefore, if queues Q[0], Q[1],...,Q]s] contain non-negative integer sequences that
are valid for the first position, then at the end of main round r > 0, only valid integer se-
quences for the first (r+ 1) positions will be contained in Q[0], Q[1],...,Q[s].0

Theorem 1 The second-order restricted weak composition generation algorlthm upon ter-

mination returns the sought second-order restricted weak composition Csﬁ

Proof The second-order restricted weak composition generation algorithm constructs non-
negative integer sequences through the base step, and the induction step. The induction step
is comprised of two steps, the main rounds, and the final round. Upon termination of the

algorithm, Q[s] is returned which contains the sought set. We wish to show that this is Cf i
Let us first consider the base step.

The base step of the algorithm creates empty non-negative integer sequences of length
n for each non-negative integer v € R(l), where 0 < v <'s. Each sequence with v at the first
position in the sequence is placed into Q[v] respectively. Thus all queues Q[0], ..., Q[s]i
contain all valid integer sequences of length one. It is important to note that each queue
represents the sums of the sequences contained in them. For instance, all the sequences in
0[2] would contain all sequences which sum to add to 2.

Next, the induction step of the algorithm is begun following the construction of the edge-
set in the construction step. Let us consider the main rounds. We can apply Lemma 2 since
we know all the sequences contained in queues Q[0]1,Q[1]1,...,Q[s]: are valid for the first
position. The algorithm conducts (n — 3) main rounds before the final round. As a conse-
quence Lemma 2 says that every queue will contain valid non-negative integer sequences for
the first (n — 2) positions.

Lastly, the final round is really a two step version of one of the main rounds. This is due
to the property that if one knows the first (n — 1) positions of the sequence, then you can
determine the last non-negative integer, since we are given the sum s of the composition.
The final round of the induction step in this algorithm will apply a condition only allowing

Generalized Algorithm for Restricted Weak Composition Generation 17

sequences (dg,di,...,ay—2,a,—1) to be valid only if (s — value) € Rn 1» where value is the
queue directed to if the algorithm were to place (n— 1)* position with from the edge-set.
Really this means that it is identical to a main round only with this additional condition. Ap-
plying Lemma 1, the algorithm is given valid integer sequences of length (n —2), and will
construct valid integer sequences of length (n — 1). By applying the described condition, the
algorithm will include the final position’s non-negative integer along with the (n— 1)* posi-
tion’s entry upon creation, and place only those which meet the final condition into Q[s],—.
This means that the sequences contained in Q[s] following the final round will be all non-
negative integer sequences (ao,di,- . .,a,—1), which contain for each position, a; € R}. By
definition, this set is a second-order restricted weak composition. At this point, the algorithm
terminates, and returns Q[s].

Therefore, the second-order restricted weak composmon generation algorithm returns

the sought second-order restricted weak composition CY a0

4 Conclusions

There exists a new generalized algorithm for the generation of restricted weak compo-
sitions as demonstrated. That is, an algorithm for generating second-order restricted weak
compositions. The second-order restricted weak composition generation algorithm covers
many types of restricted weak compositions. This algorithm can be augmented with a loop
following the execution to seek any restricted weak composition with the smallest known
subsets, due to the algorithm being the most general solution over the restriction of the
parts. The second-order restricted weak composition generation algorithm can enumerate
restrictive types of compositions such as any part-wise restricted composition, bounded
compositions, part-wise bounded composition, and more because this algorithm can use
non-continuous restricted sets.

Given the number of parts n € Z*, the sum s € Z* U {0}, and some second-order re-

stricted set R%, the worst-case time-complexity of the algorithm is © (n (|, Fi 1| +s%)), where

n+s . P
0< | o < < 1). If the sought second-order restricted weak composition is a weak
n—

composition, then the worst-case time-complexity is O(s|Cs ,|). In terms of time-complexity,
this algorithm performs on par with modern solutions to more specific problems, but has a
far more general structure. Furthermore, this algorithm is very efficient for restrictive types
of compositions over non-contiguous restrictions over the parts for large s, or n.

The space-complexity of the algorithm in the worst-case is @ (n(|% ;" 1| +57)), but
most instances consume less space than the worst-case. The worst-case space-complexity
for the construction of a weak composition is O(n|Cs ,|). In contrast to most modern solu-
tions which rely on generating an entire list, this algorithm can perform in most instances
significantly better in space-complexity due to the avoidance of generating the entire list of
a weak composition. The algorithm uses no recursion, but makes use of loops.

In turn, the algorithm is simple to implement. The algorithm only requires the use of
simple data structures to carry out the entire algorithm and could be simple to understand
and implement in contrast to many modern solutions. Such an algorithm is adaptable due
to it’s integration of returning a queue which contains all the elements within the defined
restricted weak composition. For example, such an adaptation could be to solve particular
restricted weak composition counting problems, or used by an application.

The structure of this algorithm allows for trivial augmentations that allow for the gen-

18 Daniel R. Page

eration of specific compositions. It is important to mention that the algorithm can also be
easily specialized for specific problems by using very particular restricted sets for any given
purpose for such generation algorithms. The power of the algorithm is that any restriction or
rules can be placed by constructing restricted sets and using them as input. The second-order
restricted weak composition returned by this algorithm can be used to obtain any specific
restricted weak compositions efficiently. This can be achieved in Q(nk) for the smallest
such k for restrictions over the parts. The ability to construct restricted sets by the means of
another algorithm, or for a sole purpose allows for any generalization one could want in a
restricted weak composition.

Therefore the second-order restricted weak composition generation algorithm can gen-
erate any second-order restricted weak composition of length n, and can be augmented for
efficient generation of any restricted weak composition.

Acknowledgements Thank you Dr. John van Rees for supervising this research in Summer 2011.

5 Appendix

The following section includes source code for the second-order restricted weak compo-
sition generation algorithm, the components needed for this implementation, and example
executions of the algorithm.

The following inputs and outputs were tested on a Toshiba Notebook with a 2.00 GHz
Intel Pentium Processor, with 4GB RAM on the Windows 7 operating-system. The source
code is in Java. This section begins with essential pieces to have the algorithm function, then
the algorithm, and then a few examples.

The following is source code for the array copying which is essential to the algorithm.
This class is written in Java.

class ArrayCopy{
public static int[] copy(int][] a){
int[]b = new int[a.length];
for(int i=0;i<b.length;i++){
bli] = a[il];

return b;

}
}

The following is source code for the queue used for the algorithm. This class is written
in Java.

class Queue{
class NodeQ{

public int[]element;
public NodeQ next;

public NodeQ(int[]element ,NodeQ next){
this .element = element;
this.next = next;

}

public NodeQ(int[]element){

Generalized Algorithm for Restricted Weak Composition Generation

this.element = element;
this.next = null;

}

public void setNext(NodeQ next){
this .next = next;

}

}

NodeQ head;//head of the queue
NodeQ tail;//tail of the queue
long size;

public Queue(){

this.head = null;
this.tail = null;
this.size = 0;

}

//enter operation
public void enter(int[]element){

NodeQ node = new NodeQ(element);
if (head == null){
this .head = node;

this.tail = node;

else{
this.tail .setNext(node);
tail = node;

if (element != null){
this.size = this.size+1;

}
}

//to erase an entire queue’s contents.
public void erase (){

this.head = null;

this.tail = null;

this.size = 0;
}
//to remove an element from the queue.
public int[] remove (){

int[]data;

if (head == null){
data = null;

elseq{
NodeQ node = head;
data = head.element;

head = head.next;
if (head == tail){
tail = head;

}
if (data != null){
this.size = this.size —1;

}

20

Daniel R. Page

return data;
}
//obtain the size of the queue.
public long size(){

return this.size;

//for printing the queue’s contents
public String toString (){
String str = 773
NodeQ ptr = head;
while (ptr != null){
if (ptr.element != null){
str+="(";
for(int i=0;i<ptr.element.length;i++){
str+=ptr.element[i];
if (i<ptr.element.length —1){

[IRNETIN

str+=",";

}
}

str+=")\n";
ptr = ptr.next;

}
}
str += 77,
return str;
}
}

The following is source code for the node, and linked list used the source code of the

algorithm. This is implemented in Java.

class Node{
int data;
Node next;
public Node(int data){
this.data = data;

this .next = null;

}

public void setNext(Node next){
this.next = next;

}

}

class LinkedList{
Node head;//the head of the linked list
int numNodes; //number of nodes.

//constructor
public LinkedList(){
this .head = null;
numNodes = 0;
}
//insert at the head
public void add(int data){
Node newNode = new Node(data);
numNodes +=1;
if (head == null){
head = newNode;
}

Generalized Algorithm for Restricted Weak Composition Generation 21

else{
newNode . setNext (head);
head = newNode;

}

}
//size of the linked list.
public int size (){
return numNodes;
}

}

The following is source code for the second-order restricted weak composition gener-
ation algorithm in Java. Along with the given classes, the algorithm in the form of a static
method uses the BitSet class.

public static void compositionSecondOrder(int[J[]R,int s, int n){
boolean empty = false;
int carryTill=—1;//following this main round, zeroes are allowed to be placed into n—tuples.
if ((n==0) || (n<0) || (s<0) || ((n==0) & (s>0)) || (R.length == 0)){
empty = true;//this is empty set

// Construction Step: Construct Q[0],...,Q[s] and R_-map
Queue[] Q = new Queue[s+1];//0[0],0[1],...,Q[s]
for(int i=05i<s+1;i++){

Q[i] = new Queue();

BitSet[] R_map = new BitSet[n];//n Bit vector of (s+1) bits.
for(int i=0;i<n;i++){
R_map[i] = new BitSet(s+1);

for(int i=0;i<n;i++){
// For each round...
for(int j=0;j<R[i].length;j++){
if (R[1][j] >=0) && (R[i1[j] <= s)){
R_map[i].set(R[i][j]);//Set bits for elements over the interval [0,s].
}
}
}

if ((n==1) & (lempty)){
// Trivial Case: n=I
if (Romap[0]. get(s)){
int[] element = new int[1];
element[0] = s;
Q[s].enter(element);

}
if ((n==2) && (!empty)){
// Trivial Case: n=2
for(int i=0;i<=s;i++){
if (Romap[0].get(i) & & R_map[1].get(s—i)){
int[]element = new int[2];

element[0] = i;
element[1] = s—i;
Q[s].enter(element);

}
}

if ((n>2) && (!empty)){

22 Daniel R. Page

// Construction Step: Construct the edge sets.

//check the furthest we can clear the rightmost queue Qfs].
for(int i=(n—2);i>0;i——){
if ('\Romap[i].get(0) && carryTill == —1){
carryTill=(i —1);
}

LinkedList []J[] linkEdges = new LinkedList[n—-2][s+1];
for(int i=0;i<n—2;i++){
for(int j=0;j<s+1;j++){
linkEdges[i][j] = new LinkedList();
}

for(int k=1;k<(n—1);k++){
for(int i=0;i<s;i++){
for(int j=s—i;j>=0;j——){
if (Romap[k]. get(j)){
if (1(carryTill >(k—1))||1(i+j == s)){
linkEdges [k—1][i].add(i+]);//Add to front of the list.

}
}
}

int[]J[][] edges = new int[n—2][s+1][];
//Now copy to the three dimensional array for instant access.
for(int i=0;i<(n—2);i++){
for(int j=0;j<s;j++){
Node curr = linkEdges[i][j].head;
edges[i][j] = new int[linkEdges[i][]j].size ()];
for(int k=0;k<edges[i][j].length ;k++){
edges[i][j][k] = curr.data;
curr = curr.next;

}
edges[i][s] = new int[O0];

//Base Step: Concatenate the first position.
for(int i=0;i<=s;i++){

int[]element = new int[n];
if (Romap[0]. get(i)){
element[0] = i;

Q[i].enter(element); //Let this element enter for Q[i]_1.

}
// Induction Step: Perform (n—2) rounds of generation.
for(int round=1;round <=(n—2);round++){
for(int i=(s—1);i>=0;i——){
if (round == (n—2)){//Check if Q[i]-(n—2) is reachable to Q[s]_-(n—1)
//Reachability Test
boolean reachable = false;
for(int j=0;(j<edges[round —1][i].length)&&(!reachable); j++){
int valueR = edges[round —1][i][]];
if (Romap[n—1].get(s—valueR)){
reachable = true;
}

if (!reachable){
Q[i].erase();//No elements in Q[i]_(n—2) can reach Q[s]_-(n—1).

Generalized Algorithm for Restricted Weak Composition Generation 23

}
}
int countDown = (int)Q[i].size ();
for(int elem = 0;elem<countD0wn;elem++){

int[]Jelement = Q[i].remove();//Remove from Q[i]_round to use.
if (round < (n—2)){//Main induction round
for(int j=0;j<edges[round —1][i].length;j++){
int value = edges[round —1][i][j];
int[] copy = ArrayCopy.copy(element);//Copy of integer array.
copy[round] = value—i;
Q[value]. enter (copy);//Let the copy enter Q[value]_(round+1).

}
else{
//Final Round: Last round of generation.
for(int j=0;j<edges[round —1][i].length;j++){
int value = edges[round —1][i][j];
if (Romap[n—1].get(s—value)){
int[]copy = ArrayCopy.copy(element);//Copy of integer array.
copy[round] = value—i;
copy[n—1] = s—value;
Q[s].enter(copy);//Let the copy enter Q[s]_-(n—1).

//Now we are done.
System.out. println (Q[s]); //output C_{s,n} {R-n"2}
}//compositionSecondOrder

Following, here are three input, and output examples for the second-order restricted
weak composition generation algorithm along with expected times.

Algorithm - Example 1
Input:

int s = &;
int n = 5;
int [1[1R = {{0,1,2},{2,4}.{0,2},{0,3},{0,1,2}};

compositionSecondOrder (R,s,n);

Output:

(2,4,2,0,0)
(1,4,2,0.1)
(2,4,0,0,2)
(2,2,2,0.,2)
(0,4,2,0,2)
(1,4,0,3,0)
(1,2,2,3.,0)
(2,2,0,3,1)
(0,4,0,3.1)

24 Daniel R. Page

(0,2,2,3,1)

(1,2,0,3,2)

Running Time (before printing): 0.008s
Total Running Time: 0.010s

Algorithm - Example 2
Input:

int s = 5;
int n = 6;

int[11IR = {{0,1}.{0.1}.{1}.{1,2}.{1}.{0}};

compositionSecondOrder (R,s,n);

Output:

(1,1,1,1,1,0)
(1,0,1,2,1,0)
(0,1,1,2,1,0)

Running Time (before printing): 0.003s
Total Running Time: 0.004s

Algorithm - Example 3

Input:
int s = 41;
int n = 15;

int[J[IR = {{0,1}.{0,1}, {1} {1,2}.{1}.{0}.{0,1}.{2.3}.{4.5}.{2.3},
{1,5}.{5.6}.{0,1}.{0,1},{5,10}};

compositionSecondOrder (R,s,n);

Output:

(r,1,1,2,1,0,1,3,5,3,5,6,1,1,10)

Running Time (before printing): 0.008s
Total Running Time: 0.009s

Generalized Algorithm for Restricted Weak Composition Generation 25

References

1. S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive generation of combinatorial objects by
eco. Acta Informatica, (40):585-602, 2004.

2. A. Bernini, E. Grazzini, E. Pergola, and R. Pinzani. A general exhaustive generation algorithm for gray
structures. Acta Informatica, (44):361-376, 2007.

3. F. Gray, 1953. Pulse code communication, US Patent 2632058.

4. S. Heubach and T. Mansour. Combinatorics of Compositions and Words. CRC Press, 2010.

5. P. Klingsberg. A gray code for compositions. Journal of Algorithms, 3(1):41-44, 1981.

6. D. Knuth. The Art of Computer Programming, vol. 4. Addison Wesley, 2005.

7. T. Mansour and G. Nassar. Gray codes, loopless algorithm and partitions. Journal of Mathematical
Modelling and Algorithms, (7):291-310, 2008.

8. T. Mansour and G. Nassar. Loop-free gray code algorithms for the set of compositions. Journal of
Mathematical Modelling and Algorithms, (9):343-345, 2010.

9. J. Opdyke. A unified approach to algorithms generating unrestricted and restricted integer compositions
and integer partitions. Journal of Mathematical Modelling and Algorithms, 9(1):53-97, 2010.

10. E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and Practice. Prentice-
Hall Inc., 1977.

11. V. Vajnovszki and R. Vernay. Restricted compositions and permutations: From old to new gray codes.
Information Processing Letters, 111(13):650-655, 2011.

12. T. Walsh. Loop-free sequencing of bounded integer compositions. Journal of Combinatorial Mathemat-
ics and Combinatorial Computing, (33):323-345, 2000.

13. T. Walsh. Generating gray codes in o(1) worse-case time per word. DISCRETE MATHEMATICS AND
THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2731:73-88, 2003.

	Introduction
	History of the Problem
	Algorithm
	Conclusions
	Appendix

